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EXTENDED OPTIMAL AGE REPLACEMENT
POLICY WITH MINIMAL REPAIR (*)

by Shey-Huei SHEU (*),, Chung-Ming Kuo (*) and Toshio NAKAGAWA (2)

Commaiücated by Shunsi OSAKI

Abstract. - À generalïzation of the âge replacement poticy is proposée and analysée. Under
sueh apoîicy, if an operating System faits at âge y <tr it is eïther replacée by a new System (type
II failure) with probabiîity p(y), or it undergoes minimal repair (type I failure) with probability
q (y) = 1 -p(y). Otherwise, a System is replacée when the first failure after f occurs or the total
operating time reaches ageT(0< t < T), whïchever occurs first: The cost ofthe i-th minimal repair
ofa System at âge y dépends on the randompart C(y.) and the deterministic part a (y). The aim of
the paper is tofind the optimal (f*, T*j which minimizes the tong-run expected cost per unit time of
the policy. Vanous special cases are inctuded and a numerical examplë istfinatfy given.

Keywords: Maintenance, Reliability^ Repair, Replacement poücy.

Résumé. - Nous proposons et analysons une généralisation de la politique de renouvellement
pour vieillissement; lorsque le système est en panne à l'instant y < t, il est, ou bien remplacé par un
système neuf (panne du type II) avec une probabilité p (y), ou bien soumis à une réparation minimale
(panne du type I)t avec une probabilité q(y)- ï-p-fyj- Sinon, te système est remplacé lorsque la
première panne après V instant t survient ou lorsque te temps total de bon fonctionnement atteint
T fO <t< T}.. Le coût de ta i-ième réparation minimale à l'instant y comprend une partie aléatoire
C(y)> et une partie déterministe C; (y). L'objet de cet article est de trouver la paire optimale (t*, T*)
qui minimise à ta longue l'espérance du coût, par unité de tempsr de la politique. Nous ajoutons
quelques cas spéciaux et donnons finalement un exempte numérique.

Mots clés : Maintenancer fiabilité, poEtique de renouvellement.

1. INTRODUCTION

A maintenance poficy whieh includes replacements and minimal repairs
has been first considered by Barlow and Himter [2]. In the past three decades
many modifications and generalizations of tMs poïicy have been proposed.
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For a complex System, it may be too expensive to replace or overhaul a
System at any failure occasion. Naturally, we have to repair and use it again.
When the System is repaired, it is restored to its functioning condition just
prior to failure. This is called minimal repair. That is, if the original life
distribution of the system when it was brand new was F, then the system
upon repair may have survival function Ft where t is its age at failure and
Ft(x)=F(t+x)IF{f).

In this paper a generalization of the age replacement policy is proposed
which incorporâtes minimal repair and the replacement, and the cost of the
i-th minimal repair at age y dépends on the age-dependent random part C (y)
and the deterministic part Q (y), which dépends on the age and the number
of the minimal repair. The policy is described explicitly at the beginning of
the next section. The long-run expected cost per unit time of the policy is
derived and optimization results are obtained for the infinite-horizon case.
As special cases, various results are obtained from Barlow and Hunter [2],
Tahara and Nishida [15], Boland [7], Boland and Proschan [8], Cléroux,
Dubuc, and Tilquin [9], Berg, Bienvenu and Cléroux [4], Block, Borges and
Savits [6], Sheu [14], Muth [10], and Bai and Yun [1].

In the second section the policy is described, and then the long-run
expected cost per unit time of the policy is found. A gênerai optimization
resuit for the infinite-horizon case is obtained. In the third section various
special cases are discussed. In the last section a numerical example is given.

2. GENERAL MODEL

We consider a generalized age replacement model in which minimal repair
or replacement takes place according to the following scheme.

Model:

If an operating system fails at age y < r, it is either replaced by a new
system (type II failure) with probability p(y) at a cost cu, or it undergoes
minimal repair (type I failure) with probability q(y) = l-p(y). Otherwise an
operating system is replaced by a new system at a cost cr when the first
failure after t occurs, or preventively replaced by a new system at a cost
cp when the total operating time reaches age T(0< t< T), whichever occurs
first. The cost of z-th minimal repair at age y is g(C(y), c; (y)), where C(y) is
the age-dependent random part, c,- (y) is the deterministic part which dépends
on the age and the number of the minimal repair, and g is a positive, non-
decreasing and continuous function. Suppose that the random part C(y) at
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OPTIMAL AGE REPLACEMENT POLICY 339

age y has distribution Ly (x), density function ly (je) and finite mean E [C (y)].
We assume ail failures are instantly detected and repaired.

Let the lifetime X of a néw System be a random variable with the
distribution function F(x), the survival function F(x)y the density function
f(x)=F'(x), the failure rate r(x)=f(x)/F(X)9 and the hazard function

R(x) = ƒ r(y)dy. It is well-known that F(x)=txp{-R(x)}. Note that

throughout the paper for any function H(x) the notation H(x)=l-H(x)
is used. We assume that the failure rate r(x) is differentiable and strictly
increasing to infinity.

Let Xt dénote the residual life of a System of which age is t > 0. Xo means
the life of a new System. Let Ft(x) be the distribution function of Xt. If at
time t a minimal repair is done, then

The corresponding survival function is

= F(t + x)
* > F(t) •

Let Y* dénote the length of the i-Ûi successive replacement cycle for
i = l, 2, 3, ... Let R* dénote the operational cost over the renewal interval Y*.
Thus { (Y*, R*)} constitutes a renewal reward process. The pairs (Y*, R*),
/=1, 2, 3, ... are independent and identically distributed. If D(t) dénotes the
expected cost of the operating System over the time interval [0, /], then it
is well-known that

M = £13! (2)
t E[YfY

(see, e. g., Ross [11], p. 52). We shall dénote the right-hand side of (2)
by B(t,T).

We now give a dérivation of the expression for E [R\] and E [Yj*]. First,
however, we must describe in more detail the failure process which govems
the cost over the interval [0,Yi*].

Consider a non-homogeneous Poisson process { N(t), t> 0 } with intensity
r(t) and successive arrivai times Si, S2, »• At time Sn we flip a coin. We
designate the outcome by Zn which takes the value one(head) with probability

vol. 27, n° 3, 1993
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N(t)
p(Sn) and the value zero(tail) with probability q(Sn), Let L(t) = $2 %n

n=l
and M(t)=N(ty-L(t). Then it can be shown that the process {L(t% t>0}
and {Af (/), ƒ > 0 } are independent non-homogeneous Poisson process wiöi
respective intensifies p(t)r(t) and q(t)r(t). (see, e. g., Savits [12]). This is
similar to the classical décomposition of a Poisson process for constant p.
Let Y\ dénote the waiüng time until Üie first type II failure for our model
with t-oo. Then Yi-ixif{t>0; L(t)=l). Note that Fx is independent of
{M(0, t> 0} . Thus the survival distribution of Y\ is given by

Fp(y) = P{Yx>y) = P(L(y) = 0)

= exp 1 - ƒ p (x) r (x) dx 1. (3)

We also require the foUowing Lemma from Sheu [13].

LEMMA 1: Let {M(t), t>0] be a non-homogeneous Poisson process

with intensity A (f), t>0 and A(t) = E[M(t)] = ƒ X(u)du, Dénote the
Jo

successive arrivai times by S\, 52, Assume that at time Si a cost of
g(C(SiX Ci(Si)) is incurred. Suppose that C(y) at âge y is random variables
withfinite mean E[C(y)] and g is a positive, non-decreasing and continuous
function. If A(i) is the total coast incurred over [0, / ] , then

E[A(t))= [th(y)\(y)dy,
Jo

where h(y) = EM(y)[Ec(y)[g(C(y), c M ( y ) + 1 (y))]].

For our model we have

t + Xtt i f Y i < ^ 0<Xt<T-t (5)

T, if Yi > t, T~t< Xt

and
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OPTIMAL AGE REPLACEMENT POLICY 341

cu+ E g(c(Si), «{Si)), if Fi<

)

cr+ E 9(G(Si), « (Si)), if Yi > t, 0 < X, < T - t. <6)
t = l

M(e)
cP+ E 5 (C{Si), a (Si)), if FÏ > t, T - t < Xt

i

We are now ready to dérive the expressions for E [Y{] and E [R{]. First
note that

E {¥{) =f y dFp (y) + Fp (t) ( f * (t + x) dFt (x) +f°° TdFt (x))

= JQFP (y) dy^tFp (t) + Fp (t) (t +j Ft (x) dx\

= / Fp(y)dy + Fp(t) / Ft(x)dx
Jo Jo

T), (7)
o

T-t rT-t
where U (t, T) = f Ft (x) dx = [ F(t + x) dx/F(t).

Jo Jo
Using the Lemma 1 and the independence of Y\ and {M(t), t>0}, we
can write

ft \M{y) 1
E\T, 9(C(Si),ci(Si))\dFp(y)

Jo [i-l J

+Fp(t){E crFt{T-t) + cp Ft (T - t)

= c„ Fp (e) + f !Vh (z) q (z) r (z) dz dFp(y)
Jo Jo

+FP (t) f h (y) g (y) r (y) dy + Fp (t) (cr Ft (T - t) + cp Ft {T -t)),
Jo

vol. 27, n° 3, 1993
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which on simplification is equal to

ft
CuFp(t)+ h{y) Fp (y) q (y) r (y) dy

Jo
+ Fp (t) (tv Ft (T-t) + cp Ft (T - t)). (8)

For the infinite-horizon case we want to find a pair (t, T) which minimizes
the long-run expected cost per unit of the policy. Recall that

B (t, T) =

cuFp{t)+ t h (y) Fp (y) q (y) r (y) dy
Jo

+ Fp (t)(crFt(T -t) + CpFt(T -t)

f Fp(y)dy + Fp (t)U(t, T)
Jo

Now, we shall attempt to minimize B (t, T) with respect to (t, T). Our
basic assumptions are:

Al: r(t) is strictly increasing and r(t) —> oo as t —» oo

A2: p(t) and h{t) are nondecreasing continuous fonction and/?(0)=0

A3: cu>cr>cp>0, (cu-cp)p(t) + h(t)q(t)>(cr-cp)q(t) and cr>h(t)>0
for

In fact, we can see that if (/*, T) is an optimal pair nünimizing B (t, T), then

(10)

of which proof will be presented at the end of this section.

Differentiating B (t, T) with respect to t and T, respectively» we have
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where

W (t, T) = { ( c - cr)p(t) - (cr - cp) g (t) Ft (T - t) + h (t) q (t)}

-{cuFp(t) + J^h (y) Fp (y) q (y) r (y) dy

+FP {t) [(cr - Cp) Ft (T-t) + Cp]| q (t) U (t, T), (12)

and
Ft(T-t)Fp(t)

dT

where

V (t, T) = (cr - cp) T (T) j j f Fp(y) dy +..Fp(t) t/ (t, T ) |

- | A , Fp (t) + jf A (y) Fp(y) ç (y) r (y) dy

+ Fp(t) [(tv - cp) F, (T - 1 ) + cp] | (14)

By virtue of (10), a necessary condition that a pair (?*, T*) minimizes
5 ( M ) is that it satifies dB(t,T)/dt=dB(t,T)/dt=O, or equivalently,

f, 7)== V(r, r)=0, from which it follows that

and

| -h(t) Fv (t) + f h (y)Fp (y) q (y) r (y) dy |
r (T) - - i -70

 t = 0, (16)
(cp - Cp) / Fp (y) dy

vol. 27, n° 3, 1993
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and moreover, from V(t, T)=0t we get

(17)

If a pair (f*, T*) is an optimal solution, then (**„ T*) is a solution of (15) and
(16), and the resulting minimum value of B (t, T) is (cr~cp)r(T*). Therefore,
(t*\ r*) must have the minimum T among all (t, !)'& that satisfy conditions
(15) and (16), and consequently, T* is unique. On the other hand, denoting
the left hand side of (15) by A(t, T), it follows that

= -[r(T)-r(t)}Ft(T-t)

(cT-Cp}q2(t) l (er

for

'(f) 1
-Op)}

(18)

and

for t. (19)

Further, A (t7 t) - 1 - ((cu - «v) (p(*) + kjt) q(t))/((cr - e,,) q (<)) < 0
by assumptioii A3 and 4̂ (t, oo) = oo for atl t > 0. Henee, ïf we let T(r) be
T that satisfies (15) fbr each t% Êtm T{f) m a stricüy mcxeasmg fbndioa of
?, by the implieit fonction theöEem.

One can conckKte that the optima! pair (**„ 71*) is uiiquely determined;
t* is the solution of

Recherche opératioimeJie/Operatioîis Researeà



OPTIMAL AGE REPLACEMENT POLICY 345

where

{*-?pii)?';®qit) (20)

-k(t)Fp(t) + ƒ h(V)Fp(y)q(y)r(V)dff
T = r-*— Jo

 t — , (21)
(cT - €p) / F p (y) %

and J* is given by (21) with ?=**. Moreover, the resulting minimum
expected cost per unit time is given by

3 \ t y 1 ) — \Cr — CpjT [1 ) . {e*,}

Since K(t) is a fonction of t onïy, it will be relatively easy to compiite the
solution of K{t)-Q. By (21), we have T —> oo as t —>• 0, so that lf(d is
positive to the left of where K(t) crosses zero for the first time.

It remains to prove (10). Since

W (0t T) = -U (0, T) (er » à (0) g (0) - cup(0)) < 0, T > 0, (23)

by assumption />(O)=0» f (0)= 1 and ft (y) < ĉ  for t/ > (X It follows from
(11) that dB (f, T)/d« < 0 for sufficientty small t>Q. Hence, we have ^*>&
We next prove T* < oo. Since

-Cp)r>(T)( f Fp: (y) dy + F p (<) E/ (t, T ) ) > 0. (24)

Since F(£>oo) =• oo, if follows from (13) that dB(t% T)/dT > 0 for
sufficiently large r , so we have T* < oo, if t* < oo. Further using (9)»
one can easily see that

/ h(y)Fp(y)q(y)r(9)dy
B(t, T) > *2-t . oo- as t -*• oo (25)

ƒ FF(y)d
JQ

vexl. 27, n° 3. 1993
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which implies t* < oo, Therefore, T* < oo. Finally, if ** = T*, then from
équation (14) and V(T*9 T*)=0» we have

V (T*, T*) = (cv - cp)r(T*) / Fp(»)di/ - [cwFp(T*)
Jo

+ / h{y)Fp (y) q(y)r (y)dy + cp Fp (T*)) = 0. (26)
Jo

It also follows that

FP(y)dy[
o

- \cu Fp (T*) + ƒ fc (y) Fp (y) q (y) r {y)dy + cp Fp (T*)] = 0, (27)

since T* must minimize B(T3 ï)5 i. €.,

B (f, T*) = B (T*, T*) < S (T, T)

cu F p (T)+ / h (y) Fp (y)q (y) r (y) dy+cp Fp (T)

^ T >
Fp(y)dy

or equivalently T* satisfies d»(T, T)/dT=0. Reealling that

(cu ~ c r)p(t) + ^(*)g(*) > (er - q,)g(t)

which is equivalent to {cu — cp)p(t) + h (t)q (t) > (cr - cp) and comparing
(26) and (27), we have a contradiction. Hence, ^*<J* must be true. The
proof of (10) is complete.

3. SPECIAL CASES

Case 1 (p(y)=ö, g(C(y), a(y)) = c): This is the policy considered by
Tahara and Nishida [15]. In this case, if we putp(y)=0, q(y)= 1, and h(y) = c
in (9), then we have the expression for the expected cost per unit time as

CrFt(T -t) + Cj,Ft(T -t)

t+U(t,T) '

Recherche opérationnelle/Opérations Research



OPTIMAL AGE REPLACEMENT POLICY 347

which agrées with équation (23) in Tahara and Nishida [15].

Case 2 {t-0): This is the classical age replacement policy considered by
Barlow and Hunter [2], In this case, if we put t=0 in (9), then we get the usual

(30)
/ F(y)dy

Case 3 (t=T, p(y)=0, g(C(y), Ci(y))=c): This is the policy II considered
by Barlow and Hunter [2]. The problem reduces to the classical periodic
replacement problem with minimal repair at failure. In this case, if we put
t=T, q(y)= 1, p(y)=0 and h(y) = c in (9), then we get the usual

(31)

Case4 (t=T, p(y)=Q, g(C(y), ct(y))=c(y)): This is the case considered
by Boland [7].

Case 5 (t=Typ(y)=Q, g(C(y), Cj(y)) = c,-): Boland and Proschan [8] inves-
tigated this case. In particular they considered the cost structure a=a + ic.

Case 6 (t=T, p(y)=py 0 < p < 1 and g{C(y), ct (y)) = C): This is the case
considered by Cléroux, Dubuc and Tilquin [9].

Case 7 (t=T, g(C(y), Ci(y)) = C(y)): This is the case considered by Berg,
Bienvenu and Cléroux [4].

Case 8 (t=T, g(C(y\ c,-(y)) = Ci(y)): This is the case considered by Block,
Borges and Savits [5],

Case 9 (t=T): This is the case considered by Sheu [14].

Case 10 (T = oo, p(y) = 0, g(C(y), a(y))-c): This is the case considered
by Muth [10]. In this case, if we put T = oo, p(y) = Q, q(y)= 1 and h(y) = c,
in (9), then we get the following results as Muth [10] obtained

Case 11 (T = oo, p (y) =p9 q (y) = q = 1 - p , cu = cr, g (C (y), a (y)) = C + (c/q)):
This is the case considered by Bai and Yun [1].

vol. 27, n° 3, 1993
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4. A NUMERICAL EXAMPLE

In the numerical analysis here we shall consider the system with the
Weibull distribution which is one of the most common in reliability studies.
The p.d.f. of the Weibull distribution with shape parameter 0 and scale
parameter 0 is given by

(x\p\e x P 1 - b h ^>°> 0,0>Q, (33)

and the parameter of the distribution will be chosen as 0-2 and 0 = 1,012.2.
Suppose that g(C(y), Ci(y))=C(y) + c(y). Here we discuss a model where,
at failure, one replaces the system or repairs it depending on the random
cost C or repair. Let Coo be the constant cost. A replacement (type II failure)
upon failure at âge y < t takes place if C > ê(y) Coo, if C < S (y) Coo, then
one proceeds a minimal repair (type I failure). The parameter 6 (y) can be
interpreted as a fraction of the constant cost Coo at age y, and 0 < 6 (y) < 1.
Here we consider the following parametric form of the repair cost limit
function 8(y)=-8é^ with 8 > 0 and a > 0. Suppose that the random
repair cost C has a distribution L(.) and density /(.), with mean 700 and
Standard déviation 200 (the probability of a négative cost is negligible). If
an operating system fails at age y < t, it is either replaced with a new
system with probability

p(y) = l - l{x)dx. (34)

or it undergoes minimal repair with probability

«(y)= fÖyCo°i(x)dx. (35)
io

Then the random part C(y) of minimal repair cost at age y < t has density

and

h(y) = E[g{C(y), a (y))] =

/(x)dx+c(y)- —pr / $t(%)dx+c{y). (36)
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In our computations we consider the following two different cost cases:

Casea. cu = 1,200, c r= 1,200, cp = l,000, Coo =1,100, c(y)=0;

Caseö. cM = 1,200, c r= 1,200, cp = 1,000, CQO =1,100, c(y)=0Ay.

The parameters 6 and a were varied to take the different values in order
to see their influence on the optimal solution. The results are given in Table.

In this paper, the repair cost limit fünction 6{y)-8e~<ly is chosen for the
purpose of easy computation. From the numerical results, we can dérive the
following remarks;

(i) some improvements can be made in the minimum cost per unit time
if one allows for minimal repair at failure;

(ii) from Table, the minimum cost per unit time will be reduced when the
probability of minimal repairing is age-dependent;

(iii) it can be seen that the present model is a generalization on previously
known âge replacement policies.
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