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AN ALGORITHM FOR INDEFINITE QUADRATIC PROGRAMMING
BASED ON A PARTIAL CHOLESKY FACTORIZATION (*)

by E. Casas (1) and C. Pora (?)

Abstract. — A new algorithm is described for quadratic programming that is based on a partial
Cholesky factorization that uses a diagonal pivoting strategy and allows computation of null of
negative curvature directions. The algorithm is numerically stable and has shown efficiency solving
positive-definite and indefinite problems. It is specially interesting in indefinite cases because the
initial point does not need to be a vertex of the feasible set. We thus avoid introducing articifial
constraints in the problem, which turns out to be very efficient in parametric programming. At the
same time, techniques for updating matrix factorizations are used.

Keywords: Quadratic Programming, Cholesky Factorization, Negative, Null and Positive
Curvature Directions.

Résumé. — Nous présentons dans cet article un nouvel algorithme de programmation quadratique
qui repose sur une factorisation de Cholesky avec une stratégie de pivotation diagonale et qui permet
de calculer des directions de curvature nulle ou négative. L’ algorithme est numériquement stable et
il a montré son efficacité pour résoudre des problémes définis positifs et indéfinis. Il est notamment
intéressant dans les cas indéfinis parce que le point initial n’a pas besoin d étre un extréme de la
région de points admissibles. Donc nous évitons d introduire des contraintes artificielles dans le
probléme, ce qui s’ avére trés efficace dans la programmation paramétrique. En méme temps nous
utilisons des techniques pour adapter les factorisations des matrices.

Mots clés : Programmation quadratique ; factorisation de Cholesky ; directions de courbure nulle,
positive ou négative.

1. INTRODUCTION

The aim of this paper is to present a new algorithm for solving the
following quadratic problem:
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402 E. CASAS, C. POLA

1
Minimize F (z)= §xT Hz+pl'zx

subject to c?x =b;, 1 <5 < me, (QP)
cf z <by, me +1 < j < me +miy,
li <z <, 1<i<m,

where H is an n X n symmetric matrix, p and c; are n-vectors, b; are real
numbers and /; and u; are elements of [—co, +oo] satisfying: /;<u;. In the
sequel we will denote by C the n X m matrix that collects the column vectors
cj and b will be the vector {b;}71; withm = me +m;.

Although a quadratic programming code must consider bound constraints
separately from more general inequality constraints c? z < bj, in order to
simplify the exposition were are going to formulate the problem as

1
Minimize F (z)= -2 Hz+p’ =
2 P
subject to c? z = bj, 1 <5 < me, (QP)
c?xﬁbj, me+1< 5 <me+m;.

There are two kinds of active-set methods to solve this problem. The first
kind follows a strategy for choosing a certain subset of active constraints (the
working set) that ensures that the reduced Hessian respect to the working set
never has more than one nonpositive eigenvalue. Almost all these methods
start from a feasible point x° that is a vertex of the feasible region, or else
it is necessary to add artificial constraints to the problem so that the initial
point is a vertex. These constraints are deleted from the working set as soon
as possible, which means that the algorithm must perform at least as many
iterations as the number of artificial constraints that have been added; see
Fletcher ([3, 4]), Gill and Murray [7] and Gill et al. [9]. This can retard
the solution of the problem, particularly in parametric programming when
the active constraints are close to being identified. Nevertheless there is a
method belonging to this king, proposed recently by Gill et al. [8], that does
not need to start from a vertex of the feasible region. The idea is to add
only a minimum number of artificial constraints to cover any non-positive
curvature in the reduced Hessian. However it is not possible to know a priori
this minimum number and sometimes a great deal of unnecessary artificial
constraints are added; see Example 7, in Section 5.

The second kind of methods allows any number of nonpositive eigenvalues
in the reduced Hessian and therefore it does not need to start from a vertex
of the feasible region. Our method belongs to this kind. An advantage of our
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INDEFINITE QUADRATIC PROGRAMMING 403

strategy is that the algorithm has superior theoretical convergence properties
than the algorithms allowing only a nonpositive eigenvalue. Indeed, if the
algorithm computes a Kuhn-Tucker point at which some of the Lagrange
multipliers corresponding to active constraints are null and the corresponding
reduced Hessian is singular and positive semi-definite, our method allows to
remove the inequality constraints associated with a null Lagrange multiplier
and to proceed towards the solution if the new reduced Hessian has a
negative curvature direction and if degeneracy does not occur. If the new
reduced Hessian continues to be positive semi-definite, then we can repeat
the process removing another inequality constraint with a null Lagrange
multiplier. In constrat, the strategy mentioned above does not allow to leave
the Kuhn-Tucker point; see for instance Gill et al. [8). Nevertheless, there
is a suggested procedure to deal with these situations given by Forsgren
et al. [5].

In general, the algorithms allowing only a nonpositive eigenvalue can
not solve a quadratic programming problem when the reduced Hessian
at the solution is singular and the eigenvalue zero has multiplicity two
or more. However, our algorithm follows a strategy that allows to solve
these problems. In Section 5, we will present two examples of this kind
of problems.

Another method allowing any number of nonpositive eigenvalues in the
reduced Hessian is due to Bunch and Kaufman [1]. Their method is based
on the decomposition Q=MDM? of a symmetric matrix Q, where D is block
diagonal with blocks of order 1 or 2, and M is the product of permutations
and block elementary transformations. Our algorithm is based on a partial
Cholesky factorization.

In this paper we will see that it is possible to get feasible descent directions
of negative, null or positive curvature from the Cholesky decomposition of
the reduced Hessian, thereby allowing us to deal with any case of indefinite
quadratic programming. This is performed without introducing any artificial
constraints. Also, the algorithm may be started at any feasible point x°.
Obviously numerical stability requires that the factorization be stopped when
indefiniteness of matrix is detected. In this case we compute a negative
curvature direction from the partial factorization. When the matrix is positive
semi-definite it is possible to carry out the complete factorization and to
derive a null or positive curvature descent direction. We also show that it
is possible to update the Cholesky factors in all cases in a similar form to
that used by Gill and Murray [7].

vol. 27, n°® 4, 1993



404 E. CASAS, C. POLA

The plan of this paper is the following. In the next section we study the
Cholesky factorization of a symmetric matrix A and show the way of getting
negative or null curvature directions. In Section 3 the proposed quadratic
programming algorithm is stated. Updating of matrix factors is considered
in Section 4 and some numerical examples are studied in Section 5.

2. SOME QUESTIONS ABOUT CHOLESKY DECOMPOSITION

Given an n X n matrix A that is symmetric but not necessarily positive
definite, we are going to propose an algorithm that supplies the Cholesky
decomposition of PAPT (where P is a permutation matrix) and a basis of
its kernel when A is positive semi-definite and that realizes an incomplete
factorization and furnishes a negative curvature direction when A is indefinite.
We first establish the following theorem.

TueoreM 1: A matrix A is positive semi-definite if and only if there exists
a permutation matrix P such that

r_(L o\ /LT BT
prr=(55) (5 %)

where L is an m X m lower-triangular matric with strictly positive diagonal
elements and B is an (n—m) X m matrix. The rank of A is m and a basis of

the kernel of A is formed by the vectors {PT u; }j21" defined by

s
U; = (()])-em+j,

where ey, 4 j is the (m+ j)—th column of the n X n identity matrix and i is the
m-vector solution of the system LT U5 = B]T, with Bj being the j-th row of B.

Proof: 1t is easy to verify that {PT u; i=1 is a basis of the kernel of A.
On the other hand it is well known that A is positive semi-definite if and
only if the above factorization is possible, see for example [2].

Now we propose an algorithm that determines if A is positive semi-definite

or indefinite and performs the Cholesky decomposition in the first case.

Avcorrmnm: 1. Set k=1, A®=(a®) =4, P® =Identity and
i ty

B =12 (max {laj;l,j =1,...n}">.
2. Find ¢ such that
(k)

k}y .
Ggq = Max {a§j), j=k,..,n}
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INDEFINITE QUADRATIC PROGRAMMING 405

If o) < 0 = Indefinite matrix. STOP.
If o) = 0 = Find ¢ such that
(k) _

a;’ = min {a i J = k,...,n}.

o If o < 0 = Indefinite matrix. STOP.
o If aﬁf ) = 0 = Find r and s such that

[ag;)l = max{|a(k)|, n>1i>j >k}

—If ars) # 0 = Indefinite matrix. STOP.
~If a(rlg) = 0 = End of factorization. STOP.

If a(k) > 0 = Interchange the rows and columns ¢ and k of A® the new
matrix being denoted again by A®. Perform the same interchange of rows
in P® and denote the new matrix by P&+,

3. Apply the following formulas:
For j=1 to k-1

k+1 k . . k+1 k
=l =g = ol

If kK = n = End of factorization. STOP.
Fori=k+1ton

o)
a(_k+1) %k
ik (k+])
Ok

If max {|a,( +1)| i=k+1,..,n} > B = Indefinite matrix. STOP.
Forj=k+1ton
Gk () (k+1)) 2
@5j 455 (ajk ) ’
K1) _ () k+1) (k+1)
5] ) = a;;" — a‘gk ) a§k )
4. Set k=k+1. Go to Step 2.

Remarks: (1) In practice the determination of A as a positive semi-definite
matrix is based on the choice of a parameter TOL, which depends of the
size of A and machine precision €y. We have taken

a 1=374+1,..,n

TOL =n-max {1, |a;;|, 7 =1, ey M} - €D

vol. 27, n° 4, 1993



406 E. CASAS, C. POLA

We thus decide than an element a;; is zero if |a;;| < TOL.

(2) Note that interchanges permit the factorization to progress until all
remaining diagonal elements are null or negative. This will be useful for
our quadratic programming algorithm, but in order to preserve numerical
stability it is necessary to control the growth of the Cholesky factors. We
have therefore incorporated a parameter ( into our decomposition. From
Cholesky formulas it follows that if

k+1 k k+1
|a§k )|2 > agj) = agj ) <0
and then A is an indefinite matrix. Also, from the Cholesky formulas we

get that ag-l;) is smaller than the corresponding initial diagonal element of
A, thus we have

k :
agvj) < max {a;i, t = 1,..., n}.

Therefore, if |a§-’;€+1)| > 3, we deduce from the previous relations that A

is an indefinite matrix. No special meaning must be attributed to the factor
1.2 in the definition of £, any number greater than one would be correct.

(3) If the algorithm is stopped at iteration k& with an indication of
indefiniteness, then we have obtained a permutation matrix P=P® and
the following factorization:

PAPT—(L 0 )(Im o> L BT
" \B ILin/\0 D)\o I,/

where m=k—1, L is an m X m nonsingular lower-triangular matrix, B is
(n—m) xm and D is an (n—m) X (n—m) symmetric matrix having (at least)
one strictly negative curvature direction. These matrices are defined by the
equalities

(k)

lij = a7, 1<5j<i<m,
k .
dij:a’z('+)m,j+m, 1<j<i<n—m,
bij = awhi ;o 1<i<n-m, 1<j<m.

From this factorization we can obtain some negative curvature directions.
First let us suppose that a%c-) < 0 for some index j=k; then the n-vector
PTu, with u defined by the equality

U= (g) + €5,

Recherche opérationnelle/Operations Research



INDEFINITE QUADRATIC PROGRAMMING 407

where LT4 = —BY_ and Bj_n, is the (j—m)-th row of B, is a negative

curvature direction of A:
(PTu)T A (Pu)

(@) G )@ o TG
() o) 5) () )

I, O k
:ef (Om D)e,- =a§~j) <0.
(k)

Now suppose that a;;’ = 0 for j=k to n and |a£’§)| > 0 for some r, s, with
k<s<r<n. In this case we take the n-vector

U = (g) - agﬁ)es + e,

where LT = —B,T_m + ag;) BsT_ma
curvature vector of A:

(PTu)T A (Pu) =T (g Z_m) (g’" (1))) (OLT z :im) u

= (—ag;)es + eT)T(ém (l))) (—aq(n’;)es + er)

= (ag;))z ds—m, s—m + dr—m, r—m — 2 ag;) dr—m, s—m
= (ag;))z a4+ a® — 2 (agi))Z <0.

In either case, we have seen that it is not numerically difficult to get
negative curvature directions of A from the partial Cholesky factorization
furnished by the above algorithm. If the matrix A is positive semi-definite,
Theorem 1 supplies a procedure for obtaining a basis of the kernel of A.
In both cases the method is based on the solution of a system of linear
equations with a matrix LT that is upper-triangular.

and we see that PTu is a negative

3. THE MODEL ALGORITHM FOR QUADRATIC PROGRAMMING

As usual we consider an iterative procedure that follows the active-set
strategy for solving quadratic programming problems. In each iteration we
have a feasible point x*, an n x my full column rank matrix C; whose i-th
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408 E. CASAS, C. POLA

column contains the coefficients of the i-th active constraint in the working
set at iteration k. We will denote by I; the index set corresponding to Cp,
and we will refer to I or Cy as the working set.

Following Gill and Murray [7], we factorize the matrix Cj, into the product
O Ry, where Qy is an orthogonal matrix and R, is an upper-triangular matrix.
In Q; and R; we distinguish the submatrices;

R
Qr=(Yr Sx) and Ry= ( Ok),

where Yy is n x my, Sg is nx (n—my) and Ry, is my x my. The columns of Y,
form an orthonormal basis for the range space of Cy and those of S; form
an orthonormal basis for the null space of C’,?. Finally we get the reduced
Hessian H; and compute its Cholesky decomposition in the way described
in the previous section (note that Hj is symmetric).

The reduced Hessian could be computed by the formula Hy = S,'{ H 5,
but we prefer to define H; = Z,f H Z;, for reasons that we will explain in
Section 4, where Z; is the matrix obtained from S; by setting its columns in
reverse order, that is to say Z; =Sy I, I being the matrix of order n—my:

0 1
I= -
1 0

It is well known that there are other ways to get a basis of the null space
of C{, mainly based on the use of LU factorization; see Fletcher [4]. Here
we prefer the QR factorization because of its good properties of numerical
stability (Wilkinson [12]) and because we are assuming that the matrices H
and C are not sparse and can be stored explicity in the main memory of the
computer. For large sparse matrices the LU factorization might be preferable.

Our quadratic programming algorithm performs the following steps:

Quadratic programming algorithm

1. Compute a feasible initial point x° and set k=0. Compute the

factorization QR of the working set Cy, get Z; and the reduced Hessian
Hy. Apply the Cholesky decomposition algorithm to H; as indicated above.
2. If Hy is not positive semi-definite or Z{ V F (z*) # 0 = go to 3.
Otherwise compute the Lagrange multipliers A* through the equation
Rp) = —YI V F(zF).
If all Lagrange multipliers associated with the active inequality constraints
are positive then we have found a local solution of the problem. STOP.

Recherche opérationnelle/Operations Research



INDEFINITE QUADRATIC PROGRAMMING 409

Otherwise we remove the inequality constraint corresponding to the most
negative Lagrange multiplier and modify the QR factors of the working set
and the Cholesky decomposition of the reduced Hessian. Go to Step 3.

3. Compute a descent direction:
« If H; is positive definite, then solve the system

Hydz, = -Z; V F(¥),

using the Cholesky factorization and take d*=Z;d z,.. Go to Step 4.

* If H is positive semi-definite, then compute a basis {u; 7;1““ of the
null space of Hj from the formulas given in Theorem 1 and take

d* = -7, U, UF ZF v F(z%),

where Uy is the matrix whose columns are the vectors u;.

~ If d* #0, set d* = d* and go to Step 5.

—If d* = 0, solve the system

Hydz, = —ZFV F(z%)
and take d*=Z;dz, and go to Step 4.

* If Hy 1s not positive semi-definite, then compute a descent direction of
negative curvature and continue at Step 5.

. T .k
Pr =min ¢ 1 min —b] 52
k — .
' j@h,cTd>0  cf dF

Take x**+ 1 =x*+ p;d* and set k=k+ 1. If py=1 then go to Step 2, otherwise
continue at Step 6.

4. Compute

5. Compute

. bj — c]T z*
= min _—
Pk i¢Ix, cTdi>0 c]T dk
If the index set where we look for the minimum is empty, then the
quadratic problem is unbounded below in the feasible region, so there is
no finite solution. STOP.

Otherwise take x**+1=x*+ p;d* and set k=k+1. Go to Step 6.

6. If py is the step corresponding to the constraint with index ji, add jj to
Iy and cj, to Cy. Modify the QR factorization and Cholesky decomposition
of the new reduced Hessian. Go back to Step 2.

vol. 27, n° 4, 1993



410 E. CASAS, C. POLA

Remarks: (1) First we must remark that the initial point %% need not be a
vertex. Nor do we need to introduce any artificial constraints. The Cholesky
algorithm proposed in Section 2 allows us to compute a descent direction d*
in a stable way beginning with any symmetric matrix H;. Among the possible
descent directions computed by our quadratic programming algorithm, we
find null, positive or negative curvature directions. In order to compute a
negative curvature direction we look for the most negative element aj; for
the Cholesky factorization of H and then we take the vector dz, = +PTy
as indicated in Section 2. The sign is chosen in such a way that dk = Zydz,
is a descent direction. It Hj is indefinite, but every diagonal element a;; is
zero or positive, then we take a,s as in the factorization algorithm and the
associated negative curvature direction in the way indicated in Section 2.

(2) In practive the determination of Z7 V F(z*) and d* as null vectors
(in steps 2 and 3 of our algorithm) is based on the comparison of their norm
with a small parameter depending on machine precision.

(3) With zero Lagrange multipliers, once the reduced Hessian has ceased
to be positive definite, no further constraints are deleted by an inertia-
controlling algorithm, see Gill et al. [8], p. 8. However our code deletes
inequality constraints with zero Lagrange multipliers, provided that cycling
does not occur. In Step 2, if the smallest Lagrange multiplier associated with
an active inequality constraint is zero then the corresponding constraint is
removed from the working set. If the new reduced Hessian has a negative
eigenvalue, then a descent direction of negative curvature is computed; else
the new reduced Hessian is positive semi-definite and the following null
Lagrange multiplier is studied.

Cycling can arise if degeneracy occurs at some point. Following Fletcher
[4] we will say that degeneracy occurs at a point x* if there exists a constraint
Jj such that j & I, cf ¥ = b;, and c;‘-r d* > 0. In this case the algorithm is
forced to take a zero step and add a constraint to the working set without
moving. So it is not possible to decrease F in this iteration. Although changes
in the working set can be made, if degeneracy occurs at certain stationary
points at which the reduced Hessian is positive semi-definite the possibility
of cycling arises and this is the only way of avoiding the algorithm progress.
Cycling can affect to any quadratic programming algorithm. It is easy to
check, see for instance [11], that degeneracy can occur in that kind of points
only if one of the following conditions is statisfied

» The normal vectors c; to the active constraints are linearly dependent.
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INDEFINITE QUADRATIC PROGRAMMING 411

* All the Lagrange multipliers are nonnegative and at least two of them
are zero.

So we can infer the following theorem.

TueoreM 2: If the objective function is bounded below in the feasible region
and degeneracy does not occur at stationary points, the previous algorithm
converges in a finite number of iterations to a local minimum.

Proof: Before removing an active constraint from the working set, the
algorithm has found the minimum of the current equality constrained
problem. Therefore, after a finite number of iterations the algorithm must
find a point x and a set of active constraints where the reduced Hessian
is positive semi-definite, the reduced gradient is null and the Lagrange
multipliers corresponding to the inequality constraints of the working set are
strictly positive. Under these conditions it is well known that x is a local
minimum; see for example Fletcher [4]. W

It is important to remark here the necessity for the Lagrange multipliers
associated with inequality constraints to be strictly positive if we want to be
sure that Z is a local minimum. Indeed, let us consider the following example:

Minimize F(z) = 23 — 27122
subjectto 0=z + 22 £ 2,
x1 —x3 S —2.
Let 7 = (-1, 1, 0)7 and X = (0, 2). Then (Z, X) is a Kuhn-Tucker
point and the reduced Hessian
0 -2 0 0
ZT HZ =(0,0,1) | -2 0 0|]o]=2
0 0o 2/ \1
is positive definite. However Z is not a local minimum because F'(z¢)< F(T)
for each € # 0, where ze = (e—1, e4+1,0)T : F(ze) = 2(1—€®)< 2 = F(%).

(4) In Step 3 of our algorithm, there are two different ways to compute the
descent direction if the reduced Hessian is positive semi-definite. First the
projection of the reduced gradient on the null space of the reduced Hessian

is computed. If this projection is null, it is not possible to get a descent
direction of null curvature. However, the system

Hydg, = —ZFV F(z*)

has at least one solution (in fact it has many solutions) because of the
orthogonality of ZF'V F(z*) on the null space of Hy. In this way we obtain
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412 E. CASAS, C. POLA

a descent direction of positive curvature, which allows us to solve the above
example. When Z'V F(z¥) is not orthogonal to the kernel of Hy, the above
system has no solution, but fortunately we can compute a descent direction
of null curvature in this case, as pointed out in the algorithm.

The solution of the above system, when it exists, is computed in the
following way. First we have computed the Cholesky factorization of the
reduced Hessian (see Theorem 1):

_r{Ly 0\ (/LY BF
Hie = B (Bk 0)(0 o ) Fe

where L is t;y X t; and By is (n—my—1t;) X tr. Now we denote by vk the
vector formed by the first #; components of the vector —F Z,{V F(z*),
and compute w¥ as solution of the system

Ly L% wk = oF.

k
dz, = PF <“(’) )

Let us verify that this vector is a solution of the above system:

L, 0\ (LY BT wF
Hydz, = P} S IV % )
k2 ’“(Bk 0)(0 o ) FE o
_pr (Lk 0) L¥ BT\ [u*
F\B, 0/\o o 0
Ly LY w* vk
—_ pT k Hk — pT
=4 (i) = (oo iy o)
Let us denote by b* the last n—my—t#; components of — Py, Z{ V F(zF),

and for every index j (1 < j £ n — my — tx) let PT u; be the null vector
of H; defined as in Theorem 1:

U;
uj = (6) Ctiti»
with L 4; = (Bk)f

Because Z,{V F(z*) is orthogonal to each vector P,? u; we have

Finally we take

0= (Pf uj)" (=Z['V F(z))
k
= —ul P, Z]V F(z*) = uT (Zk ) = al oF — bk,

Recherche opérationnelle/Operations Research



INDEFINITE QUADRATIC PROGRAMMING 413

Thus ﬁ]T ok = b;? and therefore

(B LY wk); = (Bg); LY wk

= (Lf 4)T Lf w* = ol (L LT w¥) = aT oF = ok

Hence we conclude that

T ’Uk T Uk
=12 (o )71 (3)

— T T kY __ T k
= —PT P, ZTV F(z¥) = — 2TV F(z*).
4. MODIFICATION OF QR AND CHOLESKY FACTORS

It is well known that as changes are made to the working set, the OR
and Cholesky factorizations can be modified rather than computed ab initio;
see Gill et al. [6]. We must distinguish two cases as these changes are a
consequence of adding or removing a constraint from the working set.

4.1. Deleting a constraint

Let C be the n xm working set, with C=QR, Q=(Y S) and

A

n= (%)

Let us assume that the i-th constraint is deleted from the working set and
let C be the associated matrix. Let us denote by R the matrix obtained from
R removing the i-th column; then C =QR. In order to reduce R to triangular
form, we apply m—i(2 x 2)-orthogonal transformations to the last columns
of R and perform the corresponding modifications to Q. The latter do not
affect the last n—m columns of Q; hence the new orthogonal matrix will
be Q=Y S) with S being augmented by a column, say that S=(s §) and
hence Z =(Z z) where z=s.

If we denote by Hz=ZT HZ the reduced Hessian before removing the i—th
constraint, the new Hessian will be

T T T
Hy=7 HZ= (fT )H(Z 2) = <ng§ ng j)

Since we are deleting a constraint, /7 must be positive semi-definite, so

we know its Cholesky decomposition:

L o\ /LT BT
_ pT
Hz =P (B 0)(0 0>P’
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414 E. CASAS, C. POLA

where L is ¢t x t and B is (n—m—t) X t. From here it follows that

T T
PoTLO)(L B)PZTHzPO
Hz=(, B 0 0 0 0o 1)
LT HZPT T H 2

Let a; be the vector formed by the ¢ first components of P ZT Hz and a, the
n—m—t vector formed by the last components. We now take b; satisfying
Lby=a; and we distinguish two cases:

First Case: zT Hz — bf b1 > 0.

In this case we take b = /27 Hz — b7 by and by = (az — Bb1)/b and

then we have

) L 0 0 I; 0 0 ' BT b\
Hy=PT [ B b, Ip 0 1 0 0 ® b |P,
b 0 0 0 —bybl 0 Iz 0

where

5 (P 0
P=( )

and /g and I denote the identity matrices with the same row dimension as B
and L respectively. Now changing the order of the last row or column we get

(L 0 0\ (I 0O 0 L u»n BT\
Hz=P [ b o0 0 1 0 0 b o |P
B b Ip 0 0 —bpbl 0 0 Ip

+ =T =T

B Ig)\0 —bdd 0 Ig)’
where B=(B by) and P is the matrix obtained from P by interchanging
the appropriate rows.

If by # O then H5 has a negative curvature direction that can be computed
as indicated in Section 2 from the above decomposition. When b, =0, H
is positive semi-definite and its Cholesky decomposition is

+ —T =T
=7 (T o\ [(IT" B'\>
Hz=F (B‘ 0)(0 0>P'
Second Case: 2T Hz — bl b £ 0.
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In this case we take b = 27 H z — b{ by and v = ag — Bb; and obtain

L 0 0 IL 0 T BT

H;=P' (B Iz 0|0 o0

0 I O )P

0
u
o 0 1 0 «f b 0 0 1
- (L 0 I 00 BE\ =
B 0 «T b B

where L = L, B = (BT b) and

(7 )

The matrix H has a negative curvature direction if b#Ooru # 0
otherwise it would be positive semi-definite with a Cholesky decomposition
associated with the matrices L and B.

If u# Oorb # 0 we can get a negative curvature direction for H7 in
the following way:

FTa=-by+BTu  and dy=|{-u
1

. . =T T T T T
It is easy to verify that (P d7) Hz P dz=-2u" u+b<0.

4.2. Adding a constraint

Let C, @=(Y S), R and Z be as in the previous section and assume that the
constraint ¢ is to be added to the working set. we define the new working set
as C=(C ¢) and we have the equality C = Q (R Q7c¢). To derive the QR
factorization of C' we choose an orthogonal transformation to annihilate the
last n—m—1 components of QTc. This transformation can be a Householder
matrix or a product of plane rotations. Since we have to compute the new
Cholesky factors of Hz, it is preferable to apply rotations in a certain order,
as we shall see. For the moment let M be a product of n—m—1 rotations that
turn (R Q7c) into an upper-triangular matrix. M affects only the last n—m
rows of (R Q7c) and its form is

(L, ©
M—(o M)’
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with M orthogonal (a product of plane rotations), so @=0MT =¥ SMT) and

- (R wu
R= (0 Mv)’

where u represents the first m components of Q7¢ and v the remainder, Mv
being zero except for its first component.

Now take Z=SMTI=(Z z). It is clear that Z is a matrix whose columns
are orthogonal and form a basis of the null space of CT. To obtain the
Cholesky factors of H7=7T HZ, we use the Cholesky decomposition of
Hz (see Section 2):

_por(L O I; o\ /LY BT
Hz =P (B IB><0 p)lo 1z)P
where D is the null matrix if Hy is positive semi-definite and D has at least

one negative curvature direction if Hz is indefinite. If Hz is positive definite,
the previous factorization reduces to Hy=PTLIT P.

Let us define ﬁz=ZT H Z. Then, from the relation Z=SI, it follows that
H;,=2THZ=IMST HSM™]
=IMIZTHZIMTT = IMIHZ;IMTT
_zeeon (L 0\ (I 0Y (LT BT\ _:-r=
=IMIP (B IB)<O D)(O Is PIM- 1.

If P=I and the rotations are applied in the planes (n, n—1), (n—1,
n-2), ..., (m+2m+1), then the matrix

con o L o
_ T
X =IMIP (B IB)

is lower-Hessenber of the form (see Gill and Murray [7])

_[r N . _ N11 0 ‘ _ ™
X—(a sT) with N_<N21 sz) and T_(W)’

where the dimensions of Ny, and D are equal and those of Njy are one
less than those of L.

When P is a permutation matrix different from the identity we can obtain
the same result by performing the rotations in a different order, namely
M = M,,c A MZl j,» Where k=#—1, i=n—m being the dimension of M,
and qu,]q is a rotation in the plane (i+1-i,4, A+1-jy), g=1, ... k. The
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pairs (i+1~ij, A+1—j1), ..., (A+1—i, i+ 1—j;,) are formed from the vector
JPVT that indicates the interchanges needed for the Cholesky factorization.
P is a permutation matrix obtained by permuting the rows of the identity
matrix, and JPVT(q), g=1, ..., i, contains the index of the row of the
identity that was moved into the g-th position. We now form the pairs (iy,
Jg) in the following way:

o If JPVT (1) > JPVT (2) = j1 = JPVT (1) and 73 = JPVT (2).
e Else j; = JPVT (2)and ¢y = JPVT (1)
o Forg=2ton — 1.
— Ifjgo1 > JPVT (¢ +1) = jy = jq-1and ég = JPVT (g + 1).
— Else jq = JPVT (¢ + 1) and ig = jg—1.
e End.

Finally we can choose a permutation matrix Py, having the structure

Px O
Px = (OX 1),

and such that
_poinripT (L0
X =PxIMIP (B IB)
is lower-Hessenberg. Thus we have

Hy; = PEX (IOL g) xT Px

_ pT rrT+Nl:)NT or+N Ds P
T X\ T +sTDNT 24T Ds )%

where D is the matrix that satisfies
I, O \ _ 1 Q
0 D) \0o D/

H;=2THZ =(Z2)T H(Z 2)
Vil HZ Vil H:z _ HE_ Vi Hz
LT HZ TH: T HZ THz)

On the other hand,
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Finally we have

H;z = FZ} (rrT + N DNT) Px

Li 0 0 Nf, N}
=T N11 0 ™ -
=Py (N21 Nog Tz) 0 D o0 0 N | Px
o o 1) \rf I
Iy 0 0 NL N,
FT N]1 71 0 61 1 0 %_11 %1 F
TEX ANy, e Nao U A
0 0 D 0 N&

where I is the identity of the same order as N1i. It is not difficult to verify
that if the i—th diagonal element of Nj; is zero then the i-th component of
ry is one of the diagonal elements of L and therefore it is strictly positive.
Taking into acocunt this fact, it follows that it is possible to use plane
rotations in order to obtain an orthogonal matrix G such that

T s
G N 1) = Ny
£l 0o /)’
N1, being a lower-triangular matrix with strictly positive diagonal elements.
We now introduce the following notation:

(En 0> _ (Nu T1> T
Ny T Nop 1

— G 0
G_(O 122)’

with I, the identity matrix of the same order as N;. From the above

and

factorization for H5 we deduce T —T
=T Tv-u 0 0 — Ill 0 0 =T Nll N21 =
H5 = Px (W = N ) G|o0 1 0]G 0 73 | Px
2 T2 e 0 0 D 0 N&

_pT (En 0 ) (111 0 ) (N1T1 Ngl)ﬁX
X Ny Iy 0 7y F%1+N22D N;g 0 Iz '

Finally we obtain a Cholesky factorization for H7 similar to that of Hz
by performing the decomposition of the matrix 3 rZ,T + N9 DN27; In this
way we arrive at the final decomposition

- —T =T
He = ?—T £ 0 IZ 2 L B P,
z B Iy 0 D 0 Iz
where the order of D is the same or lower than that of D.
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In practice, in order to prevent numerical instability, 7 F%“ + Nao DNZE
is not computed. The factorization of this matrix is obtained from the
corresponding submatrix of Z7 HZ following the algorithm described_in
Section 2.

5. NUMERICAL EXAMPLES

Our quadratic programming algorithm has been implemented in a
FORTAN 77 program (OPTR04) and applied to several examples. Many
of these examples were generated by using the random function of the
machine, but sometimes forcing the matrix H to be singular or positive
definite. Our code finished successfully in all cases, detecting an unbounded
function or finding a local minimum.

Here we present seven examples. The problems were run on a VAX 8350
under VMS 5.4, in double precision (i. e., machine precision is approximately
2.78 x 10717).

The first example, constructed by Bunch and Kaufman [1], is thoroughly
documented to give the reader an idea of the course of a typical example.

ExampLE 1
1
Minimize F(:c):§xT Hz +plz,
where
7
o Jli=4l if 1#j _|®
h”_{l.69 if i=y emdooP=l. )
0

subject to the bound constraints
-1—01(¢—-1)Zz; S, i=1,2,..,8
and the inequality constraints
zi — Tit1 £ 140.05 (2 — 1), 1=1,2,..,7.
The problem has a local minimum of F=-621.487825 at the point
T = (-1, -2, —3.05, —4.15, -5.3, 6, 7, 8)T,
and one of —131.774167 at

T = (1, 2, 1.880144, 0.780144, —0.369856,
— 1.569856, —2.819856, —4.119856)7 .
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The convention for numbering the constraints is the following:

0> lower bound — ¢
1Zi<n upper bound ¢
n<i<mn+m. equality constrainti—n
n+me <t inequality constraint i — n — me.
Beginning at x? = —i4, the routine reached the first local minimum after

7 iterations. The course of the algorithm was as follows:

Iteration 1:

» Active constraints: ~1, 9.

» A descent direction of negative curvature was computed.
e Added constraint: 10.

Iteration 2:

e Active constraints: —1, 9, 10.

* A descent direction of negative curvature was computed.
» Added constraint: 11.

Iteration 3:

e Active constraints: -1, 9, 10, 11.

* A descent direction of negative curvature was computed.
* Added constraint: 12.

Iteration 4:

¢ Active constraints: —1, 9, 10, 11, 12.

* A descent direction of negative curvature was computed.
*» Added constraint: 13.

Iteration 5:

* Active constraints: -1, 9, 10, 11, 12, 13.

¢ A descent direction of positive curvature was computed.
e Added constraint: 8.

Iteration 6:

* Active constraints: -1, 9, 10, 11, 12, 13, 8.

* A descent direction of positive curvature was computed.
* Added constraint: 7.

Iteration 7T:

» Active constraints: —1, 9, 10, 11, 12, 13, 8, 7.

* Deleted constraint: 13.

* A descent direction of positive curvature was computed.
* Added constraint: 6.

End of Routine: A local minimum was found.
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ExamrLE 2

This example is the problem number 118 of the book of Hock and
Schittkowski [10]. It is a positive definite quadratic programming exercise
in 15 variables and the solution is a vertex of the feasible region and it was
found by our code in 12 iterations.

ExampLE 3

This example is, an indefinite quadratic programming problem that has
been taken from the documentation of the routine EO4NAF (NAG Library,
Mark 14C). The feasible initial point was

—.1000000 E — 01
—.3171523 E — 01
—.5983850 E — 03
2% = | —.1127036 E — 01 |,
—.1000000 E + 00
+.2115247 E — 01
+.2431498 E — 02

and the computed solution (to seven figures)

—.1000000 E — 01
— 6986465 E — 01
+.1825915 E — 01
— 2426081 E — 01
— 6200564 E — 01
+.1380544 E — 01
+.4066496 E — 02 /

One bound constraint and four general constraints are active at the solution.

8
Il

ExampLE 4
Minimize F(z)= %xT Hzx +pTz,
where
H((i,1)=1 if 154<510;
H (i, i+ k) = 0.25ki if 1S5i<10-k,

H(i,i—k)=025k(i—k) if k<i<n, k=1,3
H (i, j) =0 in other case;
and

p(i)=(~-1), i=1,2,..10;
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subject to the bound constraints

—03<2,5025 i=1,3,..,9
~0.3< 1, i=2,4,..,10;

and the equality and inequality constraints

2x1 + 729 + 3z4 + 625 + 626 + 827 + 623 + 8x9 = 4,

5c1 + 62 + Tx3 + T4 + 525 + 226 + 227 + 228 + 89 + 6219 < 8,
—3xz1 + 919 — 223 + 374 — 325 + 276 — S5T7 + 428 — 339 + 5110 S 9,
5r1 + 4z2 + 273 + 624 + 415 + 976 + 478 + 229 + 410 < 4,

2x1 — 2 + 723 — 234 + T5 — 626 + 27 — 6x8 + 819 — 4719 < 5.

Let us remark that the matrix H is positivte definite. The feasible intitial
point was

20 = (.25, —.20174, 4434 E — 01, —.3, .25, .352, .25, —.3, .25, —.3)T.
The computed solution (to seven figures) was

T = (+.1136908, +.2908728, —.3, —.3,
+ .25, —.1772485, +.25, —.3, +.25, —.3)7.

In Examples 5 and 6, the matrix H is singular, the multiplicity of zero
eigen-value being two. These problems are difficult as suggested by the fact
that some known routines failed to obtain a solution, as VEO2AD (Harwell)
and EO4NAF (NAG), however both problems are bounded from below and
have many infinitely solutions.

ExAMPLE 5
Minimize F (z)= % sTHr +plz
subject to xz9 + 3x3 + 2z4 = 0,
221 — 22+ 23+ 124 S0,
where

4 -2 2 2 2
-2 2 1 -2
H=1 "9 5 10 7 and p=1_,
2 1 7 5 -1
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The set of solutions of this problem is the following:

-4 2 3

-5 3 4
1 +a 1 +4 o |’
1 0 -2

where «,  are any real numbers.
Beginning at x°=(0, 0, 0, 0)7, our routine reached a global solution
T = (—0.3414634, 0.2195122,
—0.2439024 E — 01, —0.7317073 E — 01)T,
F(z)=-05
after one iteration.

The reduced Hessian at the point x° is the null matrix 2 x 2 and the
reduced gradient of F at x° is null. Therefore an algorithm belonging to
the first kind (defined in Introduction as those allowing only a nonpositive
eigenvalue in the reduced Hessian) can not leave this point.

ExamrLE 6

1
Minimize F (z)= = 2T Hx + pTz,
subjectto —2<0.6z3 +0.8z3 <1,
1 — 14 + 25 < —10,

05z £1, —200 £ z4 <5,
where
-1 0 0 0 0 2
0 036 048 0 O 1.2
H = 0 048 064 0 O and p= 1.6
0 0 0 0 0 1
0 0 0 0 1 -7

The set of solutions of this problem is the following:
{(0, o, B, 5, =5)T : 0.60. + 0.88 = —2}
and F=50.5 for each one of these points. In this occasion, the start point
was xX°=(0, -5, 5, 5, —5)” and the solution #=(0, -6.8, 2.6, 5, —5)T.
The last example shows as algorithms allowing any number of nonpositive
eigenvalues can be sometimes much faster than those allowing at most one

non-positive eigenvalue, even if the method proposed by Gill et al. [8] is
followed in order to add a minimum number of artificial constraints.
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ExampLE 7
Minimize F(z)= = wTHa: +pTa,
where n=100,
[ — 19801 if 2=45=1
— 1963 if i=j>1 ~1
hij = ¢ — 11692 if 7=1 and 2Z:5100 p= :
| — 11692 if 2=1 and 2555100 -1
[ — 2044 otherwise

subject to the inequality constraint

—10=Z 21 + ... + 2100 £ +10.

The start point was x°=0 and our algorithm found the solution in two
iterations.

The optimum value of F was —3125243.289. The same value vas reached
by EO4NAF, beginning at the same point x°, after 100 iterations. This great
deal of iterations is due to the fact that EO4NAF must add 100 artificial
constraints (bound constraints) and then it must carry out 100 iterations
to deleted them. At iteration k there are still 100—k null components in
the vector x*. However the matrix H has only one nonpositive eigenvalue,
detected by our algorithm and corrected in the first iteration, finding the
solution in the second iteration, where the reduced Hessian is already
positive definite.

In Table 1 and 2, we give numerical results obtained with our code and
EO4NAF (NAG Library, Mark 14) respectively. The abbreviations in the
tables are the following ones

TEST Identifier for the problem.

CPU Execution time. Number of 10 milliseconds intervals.

ITER Number of iterations that were required to get the solution X.
F Objective function value F ().

R Sum of constraint violations r (%),
where
m;+mg
r(z)= Z lb]—c x|+ Z (b; —c z)+
J=m;+1

+ Z max (0, li — z;, ©; — ’u,,f).
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TABLE I

Performance of OPTRO4.

425

TEST CPU ITER F R
EX. 1 . 34 7 —0.6214878250 E + 03 +0.1665334537 E~15
EX.2 . 80 12 +0.6726603000 E + 03 +0.4218847494 E - 14
EX.3 . 16 7 +0.3703164590 E - 01 +0.1626303259FE - 18
EX. 4 . 14 2 —0.1034296488 E + 02 +0.1110223025 E-15
| EX. S . 6 1 -0.5000000000 E + 00 +0.1040834086 E— 16
EX.6 . 9 3 -0.5050000000 E +02 —0.0000000000 E + 00
EX. 7 . 5522 2 —0.3125243289 E+ 07 —-0.0000000000 E + 00

TABLE I
Performance of EO4NAF.

TEST CPU ITER F R
EX. 1 . 48 6 —0.6214878250 E + 03 +0.4635181128 E - 14
EX.2 . 170 12 +0.6726603000 E + 03 +0.4440892099 E - 14
[ EX. 3 . 21 6 +0.3703164590 E - 01 +0.5204170428 E- 17
EX. 4 . 11 2 ~0.1034296488 E + 02 +0.2220446049 E - 15
EX.5 . 8 1 —0.0000000000 E + 00 +0.0000000000 E + 00
| EX. 6 . 10 0 —-0.0550000000 E +02 —0.0000000000 E + 00
EX. 7 . 6759 100 —0.3125243289 E + 07 -0.0000000000 E + 00

In Examples 5 and 6, EO4ANAF failed to obtain a solution.

1.

2.

3.
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