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AN ALGORITHM FOR INDEFINITE QUADRATIC PROGRAMMING
BASED ON A PARTIAL CHOLESKY FACTORIZATION (*)

by E. CASAS C) and C. POLA (2)

Abstract. - A new algorithm is described for quadratic programming îhat is based on a partial
Cholesky factorization that uses a diagonal pivoting strategy and allows computation of null of
négative curvature directions. The algorithm is numerically stable and has shown efficiency solving
positive-definite and indefinite problems. It is specially interesting in indefinite cases because the
initial point does not need to be a vertex of the feasible set. We thus avoid introducing articifial
constraints in the problem, which turns out to be very efficient in parametric programming. At the
same time, techniques for updating matrix factorizations are used.

Keywords: Quadratic Programming, Cholesky Factorization, Négative, Null and Positive
Curvature Directions.

Résumé. - Nous présentons dans cet article un nouvel algorithme de programmation quadratique
qui repose sur une factorisation de Cholesky avec une stratégie de pivotation diagonale et qui permet
de calculer des directions de curvature nulle ou négative. L*algorithme est numériquement stable et
il a montré son efficacité pour résoudre des problèmes définis positifs et indéfinis. Il est notamment
intéressant dans les cas indéfinis parce que le point initial n'a pas besoin d'être un extrême de la
région de points admissibles. Donc nous évitons d'introduire des contraintes artificielles dans le
problème, ce qui s'avère très efficace dans la programmation paramétrique. En même temps nous
utilisons des techniques pour adapter les factorisations des matrices.

Mots clés : Programmation quadratique ; factorisation de Cholesky ; directions de courbure nulle,
positive ou négative.

1. INTRODUCTION

The aim of this paper is to present a new algorithm for solving the
following quadratic problem:
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4 0 2 E. CASAS, C. POLA

Minimize F (x) = -xT Hx + pT x

subject to cj x = bj} 1 < j < me,
cj x < bj, me + 1 < j < me + mi,

where if is an n x w symmetrie matrix, p and c/ are w-vectors, bj are real
numbers and k and ut are éléments of [—oo, +oo] satisfying: //<u{-. In the
sequel we will dénote by C the n x m matrix that collects the column vectors
Cj and b will be the vector {bj}J*=1 with m = me + rrti.

Although a quadratic programming code must consider bound constraints
separately from more gênerai inequality constraints cj x < bj, in order to
simplify the exposition were are going to formulate the problem as

Minimize F (x) = -xT Hx + pT x

subject to Cj x = 6j, 1 < j < me,

cf x < bj) me + 1 < j < me + rrii.

There are two kinds of active-set methods to solve this problem. The first
kind follows a strategy for choosing a certain subset of active constraints (the
working set) that ensures that the reduced Hessian respect to the working set
never has more than one nonpositive eigenvalue. Almost all these methods
start from a feasible point x° that is a vertex of the feasible région, or else
it is necessary to add artificial constraints to the problem so that the initial
point is a vertex. These constraints are deleted from the working set as soon
as possible, which means that the algorithm must perform at least as many
itérations as the number of artificial constraints that have been added; see
Fletcher ([3, 4]), Gill and Murray [7] and Gill et al [9]. This can retard
the solution of the problem, particularly in parametric programming when
the active constraints are close to being identified. Nevertheless there is a
method belonging to this king, proposed recently by Gill et al, [8], that does
not need to start from a vertex of the feasible région. The idea is to add
only a minimum number of artificial constraints to cover any non-positive
curvature in the reduced Hessian. However it is not possible to know a priori
this minimum number and sometimes a great deal of unnecessary artificial
constraints are added; see Example 7, in Section 5.

The second kind of methods allows any number of nonpositive eigenvalues
in the reduced Hessian and therefore it does not need to start from a vertex
of the feasible région. Our method belongs to this kind. An advantage of our
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INDEMNITE QUADRAT1C PROGRAMMING 403

strategy is that the algorithm has superior theoretical convergence properties
than the algorithms allowing only a nonpositive eigenvalue. Indeed, if the
algorithm computes a Kuhn-Tueker point at which some of the Lagrange
multipliers corresponding to active constraints are null and the corresponding
reduced Hessian is singular and positive semi-definite, our method allows to
remove the inequality constraints associated with a null Lagrange multiplier
and to proceed towards the solution if the new reduced Hessian has a
négative curvature direction and if degeneracy does not oecur. If the new
reduced Hessian continues to be positive semi-definite, then we can repeat
the process removing another inequality constraint with a null Lagrange
multiplier. In constrat, the strategy mentioned above does not allow to leave
the Kuhn-Tucker point; see for instance Gill et al [8]. Nevertheless, there
is a suggested procedure to deal with these situations given by Forsgren
et al [5].

In gênerai, the algorithms allowing only a nonpositive eigenvalue can
not solve a quadratic programming problem when the reduced Hessian
at the solution is singular and the eigenvalue zero has multiplicity two
or more. However, our algorithm follows a strategy that allows to solve
these problems. In Section 5, we will present two examples of this kind
of problems.

Another method allowing any number of nonpositive eigenvalues in the
reduced Hessian is due to Bunch and Kaufman [1], Their method is based
on the décomposition Q=MDMT of a symmetrie matrix Q, where D is block
diagonal with blocks of order 1 or 2, and M is the product of permutations
and block elementary transformations. Our algorithm is based on a partial
Cholesky factorization.

In this paper we will see that it is possible to get feasible descent directions
of négative, null or positive curvature from the Cholesky décomposition of
the reduced Hessian, thereby allowing us to deal with any case of indefinite
quadratic programming. This is performed without introducing any artificial
constraints. Also, the algorithm may be started at any feasible point x°.
Obviously numerical stability requires that the factorization be stopped when
indefiniteness of matrix is detected. In this case we compute a négative
curvature direction from the partial factorization. When the matrix is positive
semi-definite it is possible to carry out the complete factorization and to
dérive a null or positive curvature descent direction. We also show that it
is possible to update the Cholesky factors in ail cases in a similar form to
that used by Gill and Murray [7],
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The plan of this paper is the following. In the next section we study the
Cholesky factorization of a symmetrie matrix A and show the way of getting
négative or null curvature directions. In Section 3 the proposed quadratic
programming algorithm is stated. Updating of matrix factors is considered
in Section 4 and some numerical examples are studied in Section 5.

2. SOME QUESTIONS ABOUT CHOLESKY DECOMPOSITION

Given a n n x n matrix A that is symmetrie but not necessarily positive
definite» we are going to propose an algorithm that supplies the Cholesky
décomposition of PAPT (where F is a permutation matrix) and a basis of
its kernel when A is positive semi-definite and that realizes an incomplete
factorization and fumishes a négative curvature direction when A is indefinite.
We first establish the following theorem.

THEOREM 1: A matrix A is positive semi-definite if and only ifthere exists
a permutation matrix P such that

fL 0 \ (LT BT

KB o) \ 0 0

where L is an mxm lower-trïangular matric with strictly positive diagonal
éléments and B is an (n-m)xm matrix. The rank of A is m and a basis of
the kernel of A isformed by the vectors {PT UjYjZT defined by

where em +J- is the (m +j)—th column of the n x n identity matrix and ûj is the
m-vector solution of the system LT ûj = Bjf with Bj being thej-th row ofB.

Proof: It is easy to verify that {PT Uj}^!™ is a basis of the kernel of A.
On the other hand it is well known that A is positive semi-definite if and
only if the above factorization is possible, see for example [2],

Now we propose an algorithm that détermines if A is positive semi-definite
or indefinite and perforais the Cholesky décomposition in the first case.

ALGORITHM: 1. Set k=h Aik) = (a^})=A, F^=Identity and

0 = 1,2 * (max {\ajilj = 1, . ^ n } ) 1 ' 2 .

2. Find q such that

(k) r (k) . , 1
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INDEFINITE QUADRATIC PROGRAMMING 405

If a$ < 0 =» Indefinite matrix. STOP.

If Oqq — 0 => Find £ such that

a^ — min {ÖT - , j = fc,..., n}.

• If a ^ < 0 => Indefinite matrix. STOP.

• If <4t ' = 0 ^ Find r and 5 such that

Ia>Ts I ~~ m a x ~\ |et• - j ^ ft <^_ % ̂  j ^ fcj.

- I f a ^ ^ 0 => Indefinite matr ix . S T O P .

- I f a ^ = 0 => E n d of factorization. S T O P .

If CL$ > 0 => Interchange the rows and columns ^ and £ of A(/:), the new
matrix being denoted again by A ^ k \ Perform the same interchange of rows
in pf® and dénote the new matrix by p(k + x\

3. Apply the following formulas:

For ; = 1 to k-1

If jfc = n =^ End of factorization. S T O P .

For i = /c• + 1 t o n

(fc)
(k+i) _ aik

Hmax{|aj£+1)l, i = fc +l, . . . ,n} >/?=> Indefinite matrix. STOP.
For j = A; + 1 to n

a i , + l n

4. Set Jfc=jfe+1. Go to Step 2.

Remarks: (1) In practice the détermination of A as a positive semi-definite
matrix is based on the choice of a parameter TOL, which dépends of the
size of À and machine précision CM- We have taken

TOL = n - max {1, \ajj\, j = 1, .»,n} • eM .

voL 27, n° 4, 1993



4 0 6 E. CASAS, C. POLA

We thus décide than an element atj is zero if |ajj| < TOL.
(2) Note that interchanges permit the factorization to progress until all

remaining diagonal éléments are null or négative. This will be useful for
our quadratic programming algorithm, but in order to preserve numerical
stability it is necessary to control the growth of the Cholesky factors. We
have therefore incorporated a parameter (3 into our décomposition. From
Cholesky formulas it follows that if

and then A is an indefinite matrix. Also, from the Cholesky formulas we
(k)

get that Ojj is si
A, thus we have

(k)
get that Ojj is smaller than the corresponding initial diagonal element of

üjj < maxjaii, i = 1,..., n}.

Therefore, if | a ^ + 1 | > A we deduce from the previous relations that A
is an indefinite matrix. No special meaiüng must be attributed to the factor
1.2 in the définition of ƒ?, any number greater than one would be correct.

(3) If the algorithm is stopped at itération k with an indication of
indefiniteness, then we have obtained a permutation matrix P=P^ and
the following factorization:

PAP? = ( ] [ m ) [ ]

\ /
where m = k-l, L is an mxm nonsingular lower-triangular matrix, B is
(n-m)xm and D is an (n-m)x(n-m) symmetrie matrix having (at least)
one strictly négative curvature direction. These matrices are defined by the
equalities

hj = t

dij =

hj =,

4+m
a(*) .

1

1

1

<3 <

<3 <

< i <

i <

i <

n —

m,

n —

771, 1 < 3 < m.

From this factorization we can obtain some négative curvature directions.
First let us suppose that ô - • < 0 for some index j>k; then the «-vector
PTu, with u defined by the equality

Recherche opérationnelle/Opérations Research



INDEHNITE QUADRATIC PROGRAMMING 407

where LTu = —Bj_m and Bj-m is the (j-m)-ih row of B, is a négative
curvature direction of A:

(PTu)T A (Pu)

lm 0

Now suppose that a ^ = 0 forj-k to « and |af$ | > 0 for some r, s, with
k<s<r<n. In this case we take the /z-vector

(Û\ (fc)
w = I 1 - a e + e

where L r £ = -Bj._m + a ^ ^J_ m , and we see that PTu is a négative
curvature vector of A:

{Pu)T*™ = ' U
/" (fc) , \T (Im ° \ f w . ^

= (^-ûrs es + erj I 1 (^-a^/es + erj
— ( a r 5 ) *̂5—m, 5—m "I" ̂ r—m, r~m ~~ * &rs Ctr—mt s

In either case, we have seen that it is not numerically difficult to get
négative curvature directions of A from the partial Cholesky factorization
furnished by the above algorithm. If the matrix A is positive semi-definite,
Theorem 1 supplies a procedure for obtaining a basis of the kernel of A,
In both cases the method is based on the solution of a system of linear
équations with a matrix LT that is upper-triangular.

3. THE MODEL ALGORITHM FOR QUADRATIC PROGRAMMING

As usual we consider an itérative procedure that follows the active-set
strategy for solving quadratic programming problems. In each itération we
have a feasible point JC*, an n x m^ full column rank matrix C* whose i-th
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column contains the coefficients of the i-th active constraint in the working
set at itération k. We will dénote by ƒ# the index set corresponding to C*,
and we will refer to Ik or Ck as the working set.

Foliowing Gill and Murray [7], we factorize the matrix Q into the product
Qk Rfo where Qk is an orthogonal matrix and Rk is an upper-triangular matrix.
In Qk and Rk we distinguish the submatrices;

and Rk=(

where F& is n x m^ Sk is n x (n-rrik) and Rk is m^ x m#. The columns of Yk
form an orthonormal basis for the range space of Ck and those of Sk form
an orthonormal basis for the null space of Cf£. Finally we get the reduced
Hessian Hk and compute its Cholesky décomposition in the way described
in the previous section (note that Hk is symmetrie).

The reduced Hessian could be computed by the formula H^ — S^ H 5^,
but we prefer to define H^ = Z^ H Zf- for reasons that we will explain in
Section 4, where Z# is the matrix obtained from Sk by setting its columns in
reverse order, that is to say Z^ = Ŝ  /, / being the matrix of order n-m^

, .
f ••• >
\1 0/It is well known that there are other ways to get a basis of the null space

of Cj[, mainly based on the use of LU factorization; see Fletcher [4]. Here
we prefer the QR factorization because of its good properties of numerical
stability (Wilkinson [12]) and because we are assuming that the matrices H
and C are not sparse and can be stored explicity in the main memory of the
computer. For large sparse matrices the LU factorization might be préférable.

Our quadratic programming algorithm performs the following steps:

Quadratic programming algorithm

1. Compute a feasible initial point x° and set £=0. Compute the
factorization QR of the working set Ck, get Z# and the reduced Hessian
Hk* Apply the Cholesky décomposition algorithm to Hk as indicated above.

2. If Hk is not positive semi-definite or Z j V F (xk) ^ 0 => go to 3.
Otherwise compute the Lagrange multipliers A* through the équation

If all Lagrange multipliers associated with the active inequality constraints
are positive then we have found a local solution of the problem. STOP.

Recherche opérationnelle/Opérations Research



INDEFÏNITE QUADRATIC PROGRAMMING 409

Otherwise we remove the inequality eonstraint corresponding to the most
négative Lagrange multiplier and modify the QR factors of the working set
and the Cholesky décomposition of the reduced Hessian. Go to Step 3.

3. Compute a descent direction:
• If Hk is positive definite, then solve the System

using the Cholesky factorization and take dk=Zkdzk* Go to Step 4.
• If //^ is positive semi-definite, then compute a basis {uj}™~\k of the

null space of H^ firom the formulas given in Theorem 1 and take

where Uk is the matrix whose columns are the vectors Uy

- If dk ^ 0, set dk = dk and go to Step 5.

— If dk = 0, solve the system

and take dk = Zfcdzk and go to Step 4.
• If Hk is not positive semi-definite, then compute a descent direction of

négative curvature and continue at Step 5.

4. Compute

• J 1 • °J cj x [
pk — mm < 1, min = ^ 7 — >.

[ j#Ik,cJdh>Q CJ dk J
Take^ + 1 =xk + pkd

k and set k-k+1. If p^-1 then go to Step 2, otherwise
continue at Step 6.

5. Compute

Öj Cj X
Pk = min Tf^-j—.

j*/*,cjdfc>o cj dk

If the index set where we look for the minimum is empty, then the
quadratic problem is unbounded below in the feasible région, so there is
no finite solution. STOP.

Otherwise take xk^1 =xk + picd
k and set jfc=ifc+ 1; Go to Step 6.

6. If pk is the step corresponding to the eonstraint with index j%9 add jk to
Ik and Cjk to Ck. Modify the QR factorization and Cholesky décomposition
of the new reduced Hessian. Go back to Step 2.

vol. 27, n° 4, 1993
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Remarks: (1) First we must remark that the initial point x° need not be a
vertex. Nor do we need to introducé any artificial constraints. The Cholesky
algorithm proposed in Section 2 allows us to compute a descent direction dk

in a stable way beginning with any symmetrie matrix H^ Among the possible
descent directions computed by our quadratic programming algorithm, we
find null, positive or négative curvature directions. In order to compute a
négative curvature direction we look for the most négative element a^ for
the Cholesky factorization of Hk and then we take the vector dzk — ±PTu
as indicated in Section 2. The sign is chosen in such a way that dk — Zkdzk

is a descent direction. It ƒƒ# is indefinite, but every diagonal element au is
zero or positive, then we take ars as in the factorization algorithm and the
associated négative curvature direction in the way indicated in Section 2.

(2) In practive the détermination of z£v F{xk) and dk as null vectors
(in steps 2 and 3 of our algorithm) is based on the comparison of their norm
with a small parameter depending on machine précision.

(3) With zero Lagrange multipliers, once the reduced Hessian has ceased
to be positive definite, no further constraints are deleted by an inertia-
controlling algorithm, see Gill et al. [8], p. 8. However our code deletes
inequality constraints with zero Lagrange multipliers, provided that cycling
does not occur. In Step 2, if the smallest Lagrange multiplier associated with
an active inequality constraint is zero then the corresponding constraint is
removed from the working set. If the new reduced Hessian has a négative
eigenvalue, then a descent direction of négative curvature is computed; else
the new reduced Hessian is positive semi-definite and the following null
Lagrange multiplier is studied.

Cycling can arise if degeneracy occurs at some point. Following Fletcher
[4] we will say that degeneracy occurs at a point jfi if there exists a constraint
j such that j g Ifc, cj xk = bj, and cj dk > 0. In this case the algorithm is
forced to take a zero step and add a constraint to the working set without
moving. So it is not possible to decrease F in this itération. Although changes
in the working set can be made, if degeneracy occurs at certain stationary
points at which the reduced Hessian is positive semi-definite the possibility
of cycling arises and this is the only way of avoiding the algorithm progress.
Cycling can affect to any quadratic programming algorithm. It is easy to
check, see for instance [11], that degeneracy can occur in that kind of points
only if one of the following conditions is statisfied

• The normal vectors c,- to the active constraints are linearly dependent.

Recherche opérationnelle/Opérations Research
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• All the Lagrange multipliers are nonnegative and at least two of them
are zero.

So we can infer the following theorem.

THEOREM 2: Ifthe objective function is bounded below in thefeasible région
and degeneracy does not occur at stationary points, the previous algorithm
converges in a finite number of itérations to a local minimum.

Proof: Before removing an active constraint from the working set, the
algorithm has found the minimum of the current equality constrained
problem. Therefore, after a finite number of itérations the algorithm must
find a point x and a set of active constraints where the reduced Hessian
is positive semi-definite, the reduced gradient is null and the Lagrange
multipliers corresponding to the inequality constraints of the working set are
strictly positive. Under these conditions it is well known that x is a local
minimum; see for example Fletcher [4]. •

It is important to remark here the necessity for the Lagrange multipliers
associated with inequality constraints to be strictly positive if we want to be
sure that x is a local minimum. Indeed, let us consider the following example:

Minimize F{x) — x\ — 2x\X2
subject to 0 £ x\ + X2 ̂  2,

x\ — X2 ^ —2.

Let x = ( - 1 , 1, 0 ) r and A = (0, 2)T . Then (x, Â) is a Kuhn-Tucker
point and the reduced Hessian

( 0 - 2

- 2 0 0

0 0 2,
is positive definite. However x is not a local minimum because F(xe)< F(x)
foreache^O,wherexe = ( e - l , e + l , 0 ) r : F(xe) = 2 ( l - e 2 ) < 2 = F{x).

(4) In Step 3 of our algorithm, there are two different ways to compute the
descent direction if the reduced Hessian is positive semi-definite. First the
projection of the reduced gradient on the null space of the reduced Hessian
is computed. If this projection is null, it is not possible to get a descent
direction of null curvature. However, the system

has at least one solution (in fact it has many solutions) because of the
orthogonality of Z^V F(xk) on the null space of Hk. In this way we obtain

vol. 27, n° 4, 1993
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a descent direction of positive curvature, which allows us to solve the above
example. When Z^V F(xk) is not orthogonal to the kernel of /ƒ#, the above
System has no solution, but fortunately we can compute a descent direction
of null curvature in this case, as pointed out in the algoiithm.

The solution of the above system, when it exists, is computed in the
following way. First we have computed the Cholesky factorization of the
reduced Hessian (see Theorem 1):

where L^ is t% x t^ and B^ is (n-m^-^) x t^. Now we dénote by vk the
vector formed by the first t^ components of the vector — Pk Z^V F(xk),
and compute M^ as solution of the system

Lk LT
k wk = vk.

Finally we take

Let us verify that this vector is a solution of the above system:

?)»<'
T Bl\U

vk_ T (Lk Li
TV T

_ pT t^k^k'w \ _ pT I v

W

Let us dénote by bk the last n-m^-t^ components of -P& Z^V F(xk),
and for every index j (1 ^ j ^ n - m^ - tk) let P j Uj be the null vector
of Hk defined as in Theorem 1:

r Uj
Uj - ' J

with Li uj = (Bk)T.
Because Z^V F(xk) is orthogonal to each vector P£ UJ we have

= -ujuj Pk ZlV F(xk) = uj (V
hk ) = uj vk - bk.

Recherche opérationnelle/Opérations Research



INDEFINITE QUADRATIC PROGRAMMÏNG 413

Thus uj vk = bk and therefore

(Bk Li wk)3 = (Bk)3 Li wk

= (Li ûjf Li wk = ûj [Lk L
T

k w
k) = ûj vk = b).

Hence we conclude that

xk) - -Z?V F(xk).

4. MODIFICATION OF QR AND CHOLESKY FACTORS

It is well known that as changes are made to the working set, the QR
and Cholesky factorizations can be modified rather than computed ab initio;
see Gill et al. [6]. We must distinguish two cases as these changes are a
conséquence of adding or removing a constraint from the working set.

4.1. Deleting a constraint

Let C be the nxm working set, with C-QR, Q = (YS) and

Let us assume that the /-th constraint is deleted from the working set and
let C be the associated matrix. Let us dénote by R the matrix obtained from
R removing the /-th column; then C = QR. In order to reduce R to triangular
form, we apply m-i(2 x 2)-orthogonal transformations to the last columns
of R and perform the corresponding modifications to Q. The latter do not
affect the last n-m columns of Q; hence the new orthogonal matrix will
be Q - (Y S) with S being augmented by a column, say that S = (s S) and
hence Z-(Zz) where z=s.

If we dénote by Hz=ZTHZ the reduced Hessian before removing the /-th
constraint, the new Hessian will be

TT 7 r/T TT „
±1 ZJ ZJ ±1 Z

HZ zT H z
Since we are deleting a constraint, Hz must be positive semi-definite, so

we know its Cholesky décomposition:

Hz =
,B 0 / V 0 0

vol. 27, n° 4, 1993
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where L is t x t and B is (n-m-t)xt. From here it follows that

0 \ (LT BT

OJ \ 0 0
zTHZPT

Let ai be the vector formed by the t first components of P7FHz and ai the
n-m-t vector formed by the last components. We now take b\ satisfying
Lb\-a\ and we distinguish two cases:

First Case: zT Hz - bj h > 0.

In this case we take ~b = JzT Hz — b\ b\ and 62 =
then we have

\bj b 0 7 V ° ° -hb$J\0 IB 0 J
where

- G ï )
and IB and II dénote the identity matrices with the same row dimension as B
and L respectively. Now changing the order of the last row or column we get

-pT(L V \ (
- p \B IB){O -b2bï){o iB

where B-(B bx) and P is the matrix obtained from P by interchanging
the appropriate rows.

If 62 7̂  0 then H-g has a négative curvature direction that can be computed
as indicated in Section 2 from the above décomposition. When Ö2=0, H-%
is positive semi-definite and its Cholesky décomposition is

B 0) [o 0
Second Case: zT Hz - bj bi ^ 0.

Recherche opérationnelle/Opérations Research
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In this case we take b = zT H z — bj b\ and u — 0*2 — Bb\ and obtain

where Z = L, 5 T = (£T 61) and

The matrix iï^r has a négative curvature direction if b 7̂  0 or u 7̂  0;
otherwise it would be positive semi-definite with a Cholesky décomposition
associated with the matrices L and 5 .

If u ^ 0 or b 7̂  0 we can get a négative curvature direction for H-^ in
the following way:

rp rp

Lû~ —b\ + B u and

It is easy to verify that ( ~PT dj\ H^TT dj = -2uT u + b < 0.

4.2. Adding a constraint

Let C, Ö = (XS), ^ and Z be as in the previous section and assume that the
constraint c is to be added to the working set. we define the new working set
as C = (C c) and we have the equality C = Q (R QTc). To dérive the QR
factorization of C we choose an orthogonal transformation to annihilate the
last n-m-1 components of QTc. This transformation can be a Householder
matrix or a product of plane rotations. Since we have to compute the new
Cholesky factors of Hz, it is préférable to apply rotations in a certain order,
as we shall see. For the moment let M be a product of n-m-1 rotations that
turn (R QTc) into an upper-triangular matrix. M affects only the last n-m
rows of (R QTc) and its form is

=(lm O \
\0 MJ-
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with M orthogonal (a product of plane rotations), so Q = QMT=(Y SMT) and

R~(È M\0 MvJ"
where u represents the first m components of QTc and v the remainder, Mv
being zero except for its first component.

Now take Z=SMTÏ=(Z z). It is clear that Z is a matrix whose columns
are orthogonal and form a basis of the null space of ~Cr. To obtain the
Cholesky factors of H-^^Z7 HZ, we use the Cholesky décomposition of
Hz (see Section 2):

'L 0\[IL 0 \ (LT BT

IB)\0 D ) \ 0 IB

where D is the null matrix if Hz is positive semi-definite and D has at least
one négative curvature direction if Hz is indefinite. If Hz is positive definite,
the previous factorization reduces to Hz-PT LLT P.

Let us define HZ=ZT H Z. Then, from the relation Z=SÏ, it follows that

Hz = ZT H Z = ÏMST HSMTÏ

= ÏMÏZTHZÏMTÏ = ÏMÏHZÏMTÏ

If P=I and the rotations are applied in the planes (nf n-l), (n-l,
n-2), ... , (m+2/n+l), then the matrix

is lower-Hessenber of the form {see Gill and Murray [7])

X = l T with N = , r Ar and
V o s1 J \N2i N22 -fc).

where the dimensions of N22 and Z> are equal and those of N\\ are one
less than those of L.

When P is a permutation matrix different from the identity we can obtain
the same result by performing the rotations in a different order, namely
M = Miki jk . . . -Mii, j!? where k-n-1, h-n-m being the dimension of M,
and Miq7jq is a rotation in the plane (n+l-z^, n + l - ^ ) , #=1, ..*tk. The
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pairs (n + l-i ' i , /z+l-yi), . . . , ( /z+l-z^ n + l-jk) are formed from the vector
JPVT that indicates the interchanges needed for the Cholesky factorization.
P is a permutation matrix obtained by permuting the rows of the identity
matrix, and JPVT(q), q-\, . . . , h, contains the index of the row of the
identity that was moved into the q-th position. We now fonn the pairs (iq,
jg) in the following way:

• If JPVT (1) > JPVT (2) => j i = JPVT (1) and %x = JPVT (2).

« Else j i - J P V T (2) and ix - J P F T (1)

• For q—2toh—l.

- If j q ^ > JPVT (q + 1) =» ̂  = jg_x and tfl = J P F T (9 + 1).

- Else jg - J P F T (q + 1) and ig - j g _ ! .

• End.

Finally we can choose a permutation matrix Px, having the structure

Px= (Px

and such that

is lower-Hessenberg. Thus we have

ar + NDs\

where D is the matrix that satisfies

IL 0 \ A 0
o D

On the other hand,

Hz = ZT HZ = (Z.
• 71 '

zT Hz

7* TJ^7 ^7* TJ^\ / U— ~7J TI \
ZJ £1 ZJ ZJ XIZ \ I tt g Zi ±1 Z \

J \z HZ zT Hz J
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Finally we have

Hj = P j (rrT + N DNT) Px

N / J u 0 0

r2 N)

where I\\ is the identity of the same order as N\\. It is not difficult to verify
that if the z-th diagonal element of Â n is zero then the z-th component of
r\ is one of the diagonal éléments of L and therefore it is strictly positive.
Taking into acocunt this fact, it follows that it is possible to use plane
rotations in order to obtain an orthogonal matrix G such that

Nu being a lower-triangular matrix with strictly positive diagonal éléments.
We now introducé the following notation:

^N2i r2
and

(Nii _0\ (
\N2i r2) \

G =

with ƒ22 the identity matrix of the same order as N22* From the above
faetorization for H-% we deduce

Finally we obtain a Cholesky faetorization for üTj similar to that of Hz
by performing the décomposition of the matrix r2 r\ + N22 DN^2 In this
way we arrive at the final décomposition

'L 0 \ / / 7 0 \ (LT B1

where the order of D is the same or lower than that of ZX
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In practice, in order to prevent numerical instability, V2 r\ + N22
is not computed. The factorization of this matrix is obtained from the
corresponding submatrix of Z 7 HZ following the algorithm described, in
Section 2.

5. NUMERICAL EXAMPLES

Our quadratic programming algorithm has been implemented in a
FORTAN 77 program (OPTR04) and applied to several examples. Many
of these examples were generated by using the random function of the
machine, but sometimes forcing the matrix H to be singular or positive
definite. Our code finished successfully in all cases, detecting an unbounded
function or finding a local minimum.

Here we present seven examples. The problems were run on a VAX 8350
under VMS 5.4, in double précision (i. e., machine précision is approximately
2.78 x 10"17).

The first example, constructed by Bunch and Kaufman [1], is thoroughly
documented to give the reader an idea of the course of a typical example.

EXAMPLE 1

Minimize F(x) = -xT Hx + pTxy

where

/ 7 \
(\i — 7I if % ^ 7 , 6

— ̂  ' ' .f . a n d p =
L.oy 11 ti — j

subject to the bound constraints

— 6 — U.J. l 6 — I I _^ O/j _^ 4, v — X, Zt, • • • , O

and the inequality constraints

Xi - asi+i < 1 + 0.05 (» - 1), * = 1, 2,..., 7.

The problem has a local minimum of F=-621.487825 at the point

x = ( - 1 , - 2 , -3.05, -4.15, -5 .3 , 6, 7, 8)T ,
and one of -131.774167 at

x = (1, 2, 1.880144, 0.780144, -0.369856,

- 1.569856, -2.819856, -4.119856)T.
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The convention for numbering the constraints is the following:
0 > i lower bound — i

1 = i = n upper bound i

n < i ^ n + me equality constraint i — n

n -f me < i inequality constraint i — n — me.

Beginning at x® = — iy the routine reached the first local minimum after
7 itérations. The course of the algorithm was as follows:

Itération 1:
• Active constraints: - 1 , 9.
• A descent direction of négative curvature was computed,

• Added constraint: 10.

Itération 2:
•Active constraints: - 1 , 9, 10.
• A descent direction of négative curvature was computed.
•Added constraint: 11.
Itération 3:
• Active constraints: - 1 , 9, 10, 11.
• A descent direction of négative curvature was computed,

• Added constraint: 12.

Itération 4:
• Active constraints: - 1 , 9, 10, 11, 12.
• A descent direction of négative curvature was computed.

• Added constraint: 13.

Itération 5:
• Active constraints: - 1 , 9, 10, 11, 12, 13.
• A descent direction of positive curvature was computed.
• Added constraint: 8.
Itération 6:
• Active constraints: - 1 , 9, 10, 11, 12, 13, 8.
• A descent direction of positive curvature was computed,
• Added constraint: 7.
Itération 7:
• Active constraints: - 1 , 9, 10, 11, 12, 13, 8, 7.
• Deleted constraint: 13.
• A descent direction of positive curvature was computed.
• Added constraint: 6.

End of Routine: A local minimum was found.
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x° =

EXAMPLE 2

This example is the problem number 118 of the book of Hoek and
Schittkowski [10]. It is a positive definite quadratic programming exercise
in 15 variables and the solution is a vertex of the feasible région and it was
found by our code in 12 itérations.

EXAMPLE 3

This example isQan indefinite quadratic programming problem that has
been taken from the documentation of the routine E04NAF (NAG Library,
Mark 14C). The feasible initial point was

/ - .1000000£-01 \
-.3171523 E - 0 1
-.5983850 £ - 0 3
-.1127036 £ - 0 1
-.1000000 £ + 00
+.2115247 £ - 0 1

\+.2431498£-02/
and the computed solution (to seven figures)

/ - .1000000£-01 \
-.6986465 £ - 0 1
+.1825915 £ - 0 1
-.2426081 £ - 0 1
-.6200564 £ - 0 1
+.1380544 £ - 0 1

V+.4066496£-02/
One bound constraint and four gênerai constraints are active at the solution.

EXAMPLE 4

x —

Minimize F(x) = ~xT Hx + p2

where

H (i, i) = i
H(i,i + k) = 0.25fci
H(iri-k) = 0.25k(i-k)

[H (i, j) — 0 in other case;

and

if 1 <; % < 10;
if 1 ̂ « < 10-fc,
if k < i ^ n, k — 1,3;

= l, 2,„., 10;
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subject to the bound constraints

- 0 . 3 < x 2 - <0.25, i= 1,3,..., 9;

and the equality and inequality constraints

2xi + 7x2 + 3x4 +'6x5 + 6x6 + 8x7 + 6xg + 8x9 = 45
5xi + 6x2 + 7x3 + X4 + 5x5 + 2x6 + 2x7 + 2x8 + 8x9 + 6x10 ̂  8,

—3xi + 9x2 — 2x3 + 3x4 — 3x5 + 2x6 — 5x7 + 4x8 — 3xg + 5xio ̂  9,
5xi + 4x2 + 2x3 + 6x4 + 4x5 + 9x6 + 4x8 + 2x9 + 4xio ̂  4,

2xi - #2 + 7x3 — 2x4 + %5 — 6x6 4- X7 - 6x8 + 8x9 - 4xio ̂  5.

Let us remark that the matrix H is positivte definite. The feasible intitial
point was

x° = (.25, -.20174, .4434 £ - 0 1 , - . 3 , .25, .352, .25, - . 3 , .25, - .3 ) T .

The computed solution (to seven figures) was

x = (+.1136908, +.2908728, - . 3 , - . 3 ,

+ .25, -.1772485, +.25, - . 3 , +.25, - . 3 ) r .

In Examples 5 and 6, the matrix H is singular, the multiplicity of zero
eigen-value being two. These problems are difficult as suggested by the fact
that some known routines failed to obtain a solution, as VE02AD (Harwell)
and E04NAF (NAG), however both problems are bounded from below and
have many infinitely solutions.

EX AMPLE 5

Minimize F (x) = - xTHx + pTx
subject to X2 + 3x3 + 2x4 = 0,

X2 + X3 + X4 ^ 0,
where

H =

/
—

V

4
2

2

2

- 2
2

2

1

2
2

10

7

2\
1

7
and P =

I 2\

- 2

- 2
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The set of solutions of this problem is the following:

/-4\
- 5

1

V 1/

( \
3

- 1

\ o)
+ P

( 3 \
4

0

\-2/
where a, (3 are any real numbers.

Beginning at x° = (0, 0, 0, 0) r, our routine reached a global solution

x = (-0.3414634, 0.2195122,

- 0.2439024 E - 01, -0.7317073 E - 01)T,

F (x) = -0.5

after one itération.
The reduced Hessian at the point JC° is the null matrix 2 x 2 and the

reduced gradient of F at x° is null. Therefore an algorithm belonging to
the first kind (defined in Introduction as those allowing only a nonpositive
eigenvalue in the reduced Hessian) can not leave this point.

EX AMPLE 6

Minimize F (x) = - xTHx + pTxy

subject to - 2 < 0.6rr2 + 0.8x3 ^ 1,

where

X\ - X4 +X5 ^ -10,
0 ^ xi < 1, -200 < X4 < 5,

H =

( - \

o
o
o
0

o
0.36

0.48

0

0

0

0.48

0.64

0

0

0

0

0

0

0

and p=

2 \

1.2

1.6

1

The set of solutions of this problem is the following:

{(0, a, A 5, - 5 ) T : 0.6a + 0.8)9 = - 2 }

and F=50.5 for each one of these points. In this occasion, the start point
was JC° = (O, - 5 , 5, 5, -5)T and the solution JC=(O, -6.8, 2.6, 5, -5)T.

The last example shows as algorithms allowing any number of nonpositive
eigenvalues can be sometimes much faster than those allowing at most one
non-positive eigenvalue, even if the method proposed by Gill et al [8] is
foUowed in order to add a minimum number of artificial constraints.
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EX AMPLE 7

Minimise F (x) = - x Hx 4- p

where «=100,

- 19801 If i =j=l

Hx 4 p

hij =

- 1963 if i = j > 1 / - 1 \

- 11692 if j = 1 and 2 < i < 100 , p =

11692 if i = 1 and 2 ^ j < 100 v - 1 /
— 2044 otherwise

subject to the inequality constraint

- 1 0 < x i + .„ + xioo ^ +10.
Tfae start point was x°=0 and our algorithm found tiie solution in two

itérations.
The optimum value of F was -3125243.289. The same value vas reached

by E04NAF, beginning at the same point jfi9 after 100 itérations. This great
deal of itérations is due to the fact that E04NAF must add 100 artificial
constraints (bound constraints) and then it must carry out 100 itérations
to deleted Üiem, At itération k there are still 100-^ null components in
the vector je*. However the matrix H has only one nonpositive eigenvalue,
detected by our algorithm and corrected in the first itération, finding the
solution in the second itération, where the reduced Hessian is already
positive definite.

In Table 1 and 2, we give numerical results obtained with our code and
E04NAF (NÀG Library, Mark 14) respectively. The abbreviations in the
tables are the following ones

TEST Identifier for the problem.
CPU Execution time. Number of 10 milliseconds intervais.
ITER Number of itérations that were required to get the solution x.
F Objective function value F (JC).
R Sum of constraint violations r (x),

where

- CJ x\ + J2 ^ ~ CJ

max i
*=i
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TABLE I
Performance of OPTRQ4.

TEST

EX. 1 . . .

EX. 2 . . .

EX. 3 . . .

EX. 4 . . .

EX. 5 . . .

EX. 6 . . .

EX. 7 . . .

CPU

34

80

16

14

6

9

5522

ITER

7

12

7

2

1

3

2

F

-0.6214878250^ + 03

+ 0.6726603000 £ + 03

+ 0,3703164590 £ -01

-0.1034296488 £+02

-0.5000000000 £ + 00

-0.5050000000 £+02

-0.3125243289£ + 07

R

+ 0.1665334537 £ -15

+ 0*4218847494£-14

+ 0.1626303259^^18

+ 0.1110223025 £ -15

+ 0.1040834086 £ -16

! -0.0000000000 £ + 00

-0.0000000000 £ + 00

TABLE n

Performance of E04MAF.

TEST

EX. 1 . . .

EX. 2 . . .

EX. 3 . . .

EX. 4 . . .

EX. 5 . . .

EX. 6 . . .

EX. 7 . . .

CPU

48

170

21

11

8

10

6759

ITER

6

12

6

2

1

0

100

F

-0.6214878250£ + 03

+ 0.6726603000 £+03

+ 0.3703164590£-01

-0.1034296488 £ + 02

-0.0000000000 £ + 00

-0.0550000000£+02

-0.3125243289£ + 07

R

+ 0.4635181128£-14

+ 0.4440892099 £ - 1 4

+ 0.5204170428 £ -17

+0.2220446049 £ - 1 5

+0.0000000000£+00

-0.0000000000 £ + 00

-0.0000000000 £ + 00

In Examples 5 and 6, E04NAF failed to obtain a solution.
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