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OPTIMAL REPLACEMENT POLICIES FOR A
TWO-UNIT SYSTEM WITH FAILURE INTERACTIONS (*)

by T. Nakacawa (!) and D. N. P. Murray (%)

Communicated by N. Kam

Abstract. ~ This paper considers a two-unit system with the following two failure interactions:
When unit 1 fails, (1) unit 2 fails with probability a; and (ii) unit 1 causes damage with distribution
G (z) to unit 2. Expected cost rates of two models are derived when the system is replaced at failure
of unit 2 or at N-th failure of unit 1. Optimal replacement numbers N* to minimize expected costs
are discussed. Finally, an extended model of model 2 is introduced.

Keywords: Two units, failure interaction, replacement, expected cost, optimal policy.

Résumé. — Nous considérons dans cet article un systéme a deux unités avec les deux interactions
suivantes en cas de panne : dans I’ unité 1 tombe en panne, (I) : I'unité 2 (II) tombe en panne avec la
probabilité aj; I'unité 1 cause des dommages avec une distribution G (z) a I'unité 2. Nous donnons
les formules de I espérance du coiit lorsque le systéme est remplacé en cas de panne de I'unité 2 ou

a la N-iéme panne de I'unité 1. Les nombres N* de renouvellement pour minimiser les coiits moyens
sont examinés. Finalement, nous introduisons une extension au modéle 2.

Mots clés : Deux unités, interaction de pannes, renouvellement, espérance du coit, politique
optimale.

1. INTRODUCTION

Preventive maintenance policies for a single unit system have received a lot
of attention and a variety of policies have been formulated and studied [1]. If
failures of different units for multi-unit systems are statistically independent
and maintenances of each unit can be done separately, then the analysis is
straight forward as each unit is effectively a single unit system. However,
failures of units offer the opportunity to replace one or more of non-failed
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428 T. NAKAGAWA, D. N. P. MURTHY

units at a cheaper cost. Such policies are called opportunistic replacement
policies and have been studied [6, 7, 9].

In a multi-unit system, often the failure times of different units are
statistically correlated [8]. In other instances, the failures of units can affect
one or more of the remaining units. Such types of interactions between
units have been termed as failure interaction by Murthy and Nguyen [2].
They defined two types of failure interactions — induced failure and shock
damage. Further, Murthy and Casey [3] considered preventive maintenances
of a two-unit system with shock damage interaction.

In this paper, we consider a system with unit 1 and unit 2. If unit 1
failes then it undergoes only minimal repair, and unit failures occur at non-
homogeneous Poisson processes with an intensity function r(f), where r(¢)
is increasing in .

Further, when unit 1 fails, we indicate the following two failure interactions
between two units:

(1) Induced failure; unit 2 fails with probability o; at the j-th time of
unit 1 failure.

(i1) Shock damage; unit 1 causes damage with. distribution G (2) to unit 2.

Suppose that the system is replaced at failure of unit 2 or a N-th failure
of unit 1, whichever occurs first. Expected cost rate of two models are
derived and optimal replacement numbers N* to minimize them are discussed.
Finally, we introduce an extended model of model 2 where the system is
also replaced at time T.

2. MODEL 1: INDUCED FAILURE

‘Whenever unit 1 fails, it acts as a shock to induce an instantaneous failure
of unit 2 with a certain probability. Let o; denote the probability that unit 2
fails at j-th failure of unit 1. It is assumed that 0<a; <o <---<q;<---. The
system is replaced at failure of unit 2 or N-th failure of unit 1.

The probability that the system is replaced at N-th failure of unit 1 is
l-a1)(l—a2)--- (1 —an-1). (1)
The probability that the system is replaced at failure of unit 2 is
N-1
S -a)1-ag) - (1-aj-1)ej, @
=1
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OPTIMAL REPLACEMENT POLICIES 429

where «p=0. It is evident that (1)+(2)=1.

The mean time to replacement is

l-a1) - (1-—ay_ )/ 0] Ui e~ B0 r (1) dt

“(N-pT
+Z(1—C\c1) (l—aj_l)aj /()ootL?;,—(f)l];:—le‘R(t)r(t)dt
_Z(l_al) ])/ [R(t)] RO gt (3)
since
[R(t)]’ ! B, _ —Rr() ; [[B@®)Y
L5y an= [ w0 [

_[® [R@Y ~R(1) [P [R®Y ke
_/O e (1) dt /0 e a,

¢
were R (t) = / r(u) du.
0
The expected number of unit 1 failures until replacement is

(N-1)(1-c1)-- (1 —ay-1)
-1

+ ) (-1 -01) - (1-0aj-1)a
j=1

=

N-1

(1-a1) - (1-ao). (4
=1

.

Note that we do not include the number of j-th failure when the system is
replaced at j-th failure of unit 1 (j=1, 2,---,N).

Therefore, the expected cost rate is

N-1
a 2, Ajte—{a—c)Ay_

C1(N) = —I=— : 5)
=4 Jo° pi(t)dt
3=
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430 T. NAKAGAWA, D. N. P. MURTHY

where A;=(1-ay)---(1-a)(j=1,2,---), Ap=1, p;O=(R®OV/j e R®
(j=0, 1, 2, ---) which is used for the other models throughout the paper,
c1= cost of one unit 1 failure, c; =replacement cost at N-th failure of unit 1,
and c3=replacement cost at failure of unit 2 with c3>c;.

We seek an optimal number N* which minimizes Cy(N). From the
inequality C;(N+1)=C; (N), we have

N—
]g: Aj [7pi(t)dt  y_y
{ I3 e (1) dt Z“‘}

An_1— AN plm

+(Ca—02){AN ™ o () Z Aj / t)dt + An— 1} >c3. (6)

Denote the left side of (6) by L; (N).

LI(N+1) — L1 (N)

1 1
= Z Aj / Dj (t) dt{ [fooo Y (t) dt - fooo o (D) dt:!

AN — AN+1 _ AN—l - AN
ANt [0 pns1 () dt An [3° p (t)dt

+(63 — Cz)

Suppose that either of «; or r(¢) is strictly increasing. Then, from [S], if 7 (?)
(o]
is strictly increasing then p;(t) dt is strictly decreasing in j and if «;

0 .
is strictly increasing then [Ay —An+1]/An+1 is also strictly increasing. Then,
L, (N) is strictly increasing in N, and hence, an optimal number N* is given
by a unique minimum such that L; (N)=cj3.

Consider two particular cases:
(1) Suppqse that o is constant, ie., = and
Ai=(1-ay (j=0, 1, 2, ---). Then, equation (6) is rewitten as

N-1 j oo
LU Fmoa
f0°° py (t)dt fol o

Zat@i-ae-a)

)
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OPTIMAL REPLACEMENT POLICIES 431

If r (¢) is strictly increasing then the left side L (V) of (7) is strictly increasing
and

11—«

; _ % —aR(t) g _
ngnooLl(N) r(oo)/o e dt >

Thus, if

(0 °°e_a t) l-«a a+(a/(1 - a))cs
@) [ s o (s ey

then a finite N* is given by a unique minimum which satisfies (7).
Note that the expected number of unit 1 failures until unit 2 failure is

= i 1-«
m=>Y (1-a) = :
j=1

@
Then,

l-a a+(af(l-0a))cs  (camtcz)m

a a+(e/l-a)(cs—c) cam+ec—c’

is increasing in m from 0 to co. Thus, a finite N* exists, when m is smaller.

ExampLe. Suppose that p; (t) = [(t2)7 /5! e~"’. Then, since r()=2¢ is
strictly increasing to oo, there exists a unique minimum which satisfies (7).
Table 1 shows the optimal numbers N* for (c3—-c)/c1=1, 2, 5, 10, 20, 50
and cy/c;=2, 3, 5, 10, 20, 50 when a=0.1.

(ii) Suppose that r(f)= A, i.e., unit 1 failure occurs at a Poisson process
‘with rate ).

Then, equation (6) is

N-1
lo} c3 —¢
: N ZAj+AN—12 3 - ®)
— QN =0 Cc3 — C2

If o is strictly increasing in j then the left side L; (V) of (8) is strictly
increasing and

N-1
. _ ax
ngnoo Li(N) = o jz_% Aj,
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TABLE 1
Optimal numbers N* to minizmize C; (N) when
p; (t) = [(1?)7/j!)e™" and ;=011

calcy
(c3—c2)lcy
2 3 5 10 20 50
oo ..
2 2 2 4 6 11
2 1 2 2 4 6 11
Soeeenns 1 2 2 3 5 9
0....... 11 1 3 4 7
20....... i 1 1 2 3 s
0....... 11 1 1 2 3
where oo = lim aj. Thus, if
J o
(8% e C C
o} E A]' Z 3 1 ,
1— ag 4 c3 — C2
=0

then a finite N* is a unique minimum which satisfies (8).

ExampLE. Suppose that r(£)=A\ and o;=1- 3. Then, from the results (ii),
a finite n* exists and is given by a unique minimum which satisfies

N
1-pY Z FE+N/2 L gN-1)N/2 5 BT
g < T c3—c
=0
Table 2 shows the optimal number N* for (c3—cp)/c;=1, 2, 5, 10, 20, 50
and cp/c1=2, 3, 5, 10, 20, 50 when 8=0.9.

3. MODEL 2: SHOCK DAMAGE

Whenever unit 1 fails, it acts as a shock to unit 2 and causes damage
with distribution G (x) to unit 2. The damage is cumulative and unit 2 fails
whenever the total damages exceed a failure level Z. The system is replaced

at failure of unit 2 or N-th failure of unit 1.
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TABLE 2
Optimal numbers N* to minimize C; (N) when
pi)=[(\tylj!]e™M and aj=1-(0.9).

C2/C1
(c3—c2)fer

2 3 5 10 20 50
|

1 4 7 12 17 25
2.0 ... 1 1 4 8 12 19
S 1 1 1 4 7 12
10 ....... 1 1 1 1 4 8
20 ... L. 1 1 1 1 1 5
50 ....... 1 1 1 1 1 1

433

The probability that the system is replaced at N-th failure of unit 1 is

™ (2,
where GO (x) is the j-th convolution of G (x) with itself.

The mean time to replacement is

N-1 oo
Y @) [ nwa
i=1 0
The expected number of unit 1 failures until replacement is

N-1
(V-1 M)+ Y (-1 [6"D(2) - ¢9(2)]

i=1

where GO (x)=1 for x>0.

Therefore, the expected cost rate is

a Nil GU) (Z) 4¢3 — (e3 — c2) G (2)
Cp (N) = —=

N-1 . ’
S GO (2) 57 (1) d
vol. 27, n° 4, 1993 =
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(12)



434 T. NAKAGAWA, D. N. P. MURTHY

where ¢ =cost of one unit 1 failure, ¢ =replacement cost at N-th failure of
unit 1, and c¢3 =replacement cost at failure of unit 2 with c3>c¢;.

In particular, when Z goes to infinity, C; (N) is

Cy (N) = cl(N 1)+02, (13)

Z fo p; (t)dt

which corresponds to (11) of [5].

We seek an optimal number N* which minimizes C; (N) in (12). From the
inequality C, (N+1)=C, (N), we have

1 N-1 ) 0o N-1 )
c 7 . — J
1 { fooo DN (t) dt j§:0 G (Z) /0 pj (t) dt j§ 1: G (Z)}

(N) (N+1)
+(c3 — ¢2) {(;(N)((ZZ)) fG p— (Z) Z GcY) (2) / p; (t)dt
0

+G) (Z)} > c3. (14)
Denote the left side of (14) by L, (N).
Ly(N+1) — Ly (N)

5 (9) * d 1 1
= ]lg G (Z)A p; (t) t{Cl |:fooo N1 (t) dt - fooo N (t) dt:l
G (2) - W+ (7) W (Z)- ¢VHD ()
GN+1) (Z f() DPN+1 (t) dt GN) (Z) f()oo PN (t) dt }

+(c3 —

Suppose that either of [1-G™N*! (Z)/G™ (Z)] or r(2) is strictly increasing.
Then, L, (N) is also strictly increasing in N, and hence, an optimal number
N* is given by a unique minimum which satisfies (14).

In particular, suppose that G (z) = 1 — e™#%. Then,

G(N+1) (.’L‘) B j=§+ (ﬂx)j/j!
W@ R (it
j=N

is decreasing in N. Further,
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hm Ly(N) = {r(oo) z GY) (z) / pj (t) dt — uZ}
Heam e {r(oo>§G” @ [},

where GU)(Z) = Z (“Z) e, Thus, if
=j

r (00) Z GY) (2) / pj (t)dt > M

es—cgter’

then a finite N* is given by a unique minimum which satisfies (14). Further,
when r(9)=A, if 14+ uZ>(c3— cl)/(c3 ¢y) then a finite N* exists uniquely,

since r oo)/ Dj t)dt_lande]) (Z) =1+ pZ.
=0

4. EXTENDED MODEL

In model 2, suppose that the system is replaced at time T, at failure of
unit 2 or N-th failure of unit 1, whichever occurs first.

The probability that the system is replaced at time T is
N-1 .
> pi (T)GY) (2). (15)
=0

The probability that the system is replaced at N-th failure of unit 1 is

3 5 (1) G (2). 16)

j=N
The probability that the system is replaced at failure of unit 2 is

N-1 0
S p(ME-6Y 2+ Y 5 (T)1 - 6N (2)]
: Z

j=0

N oo
=316V D2) - V(2] Y pi(T). (17)

j=1 1=j
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It is evident that (15)+(16)+(17)=1.
The mean time to replacement is

N-1
Y G (2)+ 6™ (z) / ton 1 (8)7 (£) dt

=0
+Z IGU=D (2) - GU) (2)] / tp; 1 ()7 (t) dt

j=1
— ), ,
jE . GV (Z) /(; p; (t) dt. (18)

The expected number of unit 1 failures until replacement is

Z jp; (T) G (Z) +(N —1) Z p (T) G (Z)

j=N
+Z(z—1>[a0 V(2) - 6 (z)] Zp](T)
j= =j
N-1 0 .
=Y G2 p (D). (19)
j=1 i=j

Therefore, the expected cost rate is
C(T,N)
( N-1 . e} N) e} \
c Zl GU(2) 3 pi(T) + 2 G™M (2) ,EN p; (T)
j=1 i=j ' i=

ey %1 QU1 (2) - GO (2)] 32 pi (T)
7= i=j

'S GV (2)p @)
A - . (20)
N-1 i

Y. GY(2) f] pi(t)dt

3=0

where ¢y =cost of one unit failure ¢ =replacement cost at N-th failure of
unit 1, c3=replacement cost at failure of unit 2, and c4=replacement cost
at time 7.

In particular, when T goes to infinity, C (T, N) agrees with C; (V) in (12).
Further, when both N and Z go to infinity, (20) is
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R(T)+
C(T)=cl(%, 1)

which agrees with [1] of periodic replacement.

5. CONCLUSIONS

We considered two types of failure interactions and discussed the optimal
replacement policies.

The above two models characterize many real systems. The following
is an illustrative example from chemical industry. The system consists of
a metal container (unit 2) in which chemical reactions take place and the
temperature of the container is controlled by cold water pumped through a
pneumatic pump (unit 1). Consider the case where the pump fails and as a
result the pressure inside can build up to lead to an explosion if the quantity
of reacting fluid is high. This situation is modelled by model 1 with oj=«
for all j and « is the probability that the volume of fluid in the container
is high. A different scenario is the following. Whenever the pump fails, the
temperature of the tank rises and the container surface gets corroded. As a
consequence, the thickness of the container decreases. The damage is the
reduction in the wall thickness and it is additive. The container fails when
the total reduction in the wall thickness exceeds some specified limit. This
situation is modelled by model 2. Note that without unit 1 failure, there is no
damage to unit 2 and hence it does not fail. If the container is preventively
maintained at time T before failure and is like new, the system corresponds
to an extended model.
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