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OPTIMAL REPLACEMENT POLICIES FOR A
TWO-UNIT SYSTEM W1TH FAILURE INTERACTIONS (*)

by T. NAKAGAWA C1) and D. N. P. MURTHY (2)

Communicated by N. KAID

Abstract. - This paper considers a two-unii System with the following two f allure interactions:
When unit 1 fails, (i) unit 2 fails with probability OCJ and (n) unit 1 causes damage with distribution
G (z) to unit 2. Expected cost rates oftwo models are derived when the system is repîaced atfailure
of unit 2 or at N-th failure of unit 1. Optimal replacement numbers iV* to minimize expected costs
are discussed. Finally, an extended model of model 2 is introduced.

Keywórds: Two units, failure interaction, replacement, expected cost, optimal policy.

Résumé. - Nous considérons dans cet article un système à deux unités avec les deux interactions
suivantes en cas dépanne : dans l'unité 1 tombe en panne, (I) : l'unité 2 (II) tombe en panne avec la
probabilité a ; ; l'unité 1 cause des dommages avec une distribution G(z) à l'unité 2. Nous donnons
les formules de l'espérance du coût lorsque le système est remplacé en cas de panne de l'unité 2 ou
à la N-ième panne de l'unité 1. Les nombres i¥* de renouvellement pour minimiser les coûts moyens
sont examinés. Finalementf nous introduisons une extension au modèle 2.

Mots clés : Deux unités, interaction de pannes, renouvellement, espérance du coût, politique
optimale.

1. INTRODUCTION

Préventive maintenance policies for a single unit System have received a lot
of attention and a variety of policies have been formulated and studied [1]. If
failures of different units for multi-unit Systems are statistically independent
and maintenances of each unit can be done separately» then the analysis is
straight forward as each unit is effectively a single unit System. However,
failures of units offer the opportunity to replace one or more of non-failed
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units at a cheaper cost. Such policies are called opportunistic replacement
policies and have been studied [6, 7, 9],

In a multi-unit System, often the failure times of different units are
statistically correlated [8]. In other instances, the failures of units can affect
one or more of the remaining units. Such types of interactions between
units have been termed as failure interaction by Murthy and Nguyen [2].
They defined two types of failure interactions - induced failure and shock
damage. Further, Murthy and Casey [3] considered préventive maintenances
of a two-unit System with shock damage interaction.

In this paper, we consider a system with unit 1 and unit 2. If unit 1
failes then it undergoes only minimal repair, and unit failures occur at non-
homogeneous Poisson processes with an intensity function r(t\ where r(i)
is increasing in t.

Further, when unit 1 fails, we indicate the following two failure interactions
between two units:

(i) Induced failure; unit 2 fails with probability o/ at the j-th time of
unit 1 failure.

(ii) Shock damage; unit 1 causes damage with distribution G(z) to unit 2.

Suppose that the system is replaced at failure of unit 2 or a JV-th failure
of unit 1, whichever occurs first. Expected cost rate of two models are
derîved and optimal replacement numbers iV* to minimize them are discussed.
Finally, we introducé an extended model of model 2 where the system is
also replaced at time T.

2. MODEL 1: INDUCED FAILURE

Whenever unit 1 fails, it acts as a shock to induce an instantaneous failure
of unit 2 with a certain probability. Let aj dénote the probability that unit 2
fails atj-th failure of unit 1. It is assumed that 0 < a j < OLI<* * *<o/<- • •. The
System is replaced at failure of unit 2 or iV-th failure of unit 1.

The probability that the System is replaced at iV-th failure of unit 1 is

Tlie probability that the system is replaced at failure of unit 2 is

1 - ax)(l-a2) - • (1 - aj-i)*,;
3=1
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where ao=O. It is evident that (1) + (2) = 1.

The mean time to replacement is

Ë

r(t)dt

= ËV
since

r , rat! e-m r(t)it=

were R(t) = / r (u) du.

The expected number of unit 1 failures until replacement is

J V - l

Note that we do not include the number of y-th failure when the system is
replaced at j-th failure of unit 1 (j-1, 2, * * -,N).

Therefore, the expected cost rate is

N-l

i-o

vol. 27, n° 4, 1993



430 T. NAKAGAWÀ, D. N. P. MURTHY

(y = 0, 1, 2, • • •) which is used for the other models throughout the paper,
Ci = cost of one unit 1 failure, C2=replacement cost at iV-th failure of unit 1,
and C3= replacement cost at failure of unit 2 with C3>C2.

We seek an optimal number iV* which minimizes Ci (AT). From the
inequality C\ {N+l)>C\ (iV), we have

N-l

r E Aj ir Pi (<) di jv-
C

+(C3 " ( / ^ " i L ËJo Piv (*) at ^ o h

Dénote the left side of (6) by Lx (N).

3=0

. / x ^iV - ÂftT+1
+ (C3 - C2J ' (t) dt AN JQ piv (t) dt\ \

Suppose that either of aj or r(t) is strictly increasing. Then, from [5], if r(t)
/*oo

is strictly increasing then / pj(t) dt is strictly decreasing in y and if o/
Jo

is strictly increasing then [AN—AN+I]/AN+I is also strictly increasing. Then,
Li (AO is strictly increasing in N9 and hence, m optimal number N* is given
by a unique minimum such that L\ (N)>c^.

Consider two particular cases:
(i) Suppose that aj is constant, i\e., otj = a and

Aj = (l-ay (j=0, 1, 2, * * •). Then, équation (6) is rewitten as

j=0 1 — a — (1 — a ) ^
fi°PN(t)dt ö

ci + (a/(l - a))(c3 - c2)
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If r 0) is strictly increasing then the left side L\ (N) of (7) is strictly increasing
and

lim Li(N) = r(oo) f°° e~aRW dt - —-.

Thus, if

r(=o)
- < * ) '

then a finite AT* is given by a unique minimum which satisfies (7).
Note that the expected number of unit 1 failures until unit 2 failure is

OOOO -

(1 — ay = .

Then,

1-a ci + ( a / ( l - a)) ca
a ci + ( a / ( l - a ) ) (03 - cg) ci m 4- C3 — C2 ?

is increasing in m from 0 to 00. Thus, a finite AP exists, when m is smaller.

EXAMPLE. Suppose that pj (t) = [(£2)Vi 0 e""*2- Then, since r(t) = 2t is
strictly increasing to 00, there exists a unique minimum which satisfies (7).
Table 1 shows the optimal numbers AT* for (c3-e2)/ei = l, 2, 5, 10, 20, 50
and c2/ci=2, 3, 5, 10, 20, 50 when a=0.1.

(ii) Suppose that r(r) = A, i.e., unit 1 failure occurs at a Poisson process
with rate À.
Then, équation (6) is

<8>

If aj is strictly increasing in j then the left side L\ (N) of (8) is strictly
increasing and

N-l
ru _ _

lim 1 - a o o
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TABLE 1

Optimal numbers N* to minimize Cj (N) when
Pi(t) = l(t2Y/jl\e-t2 and aj =0.1.

1

2

5

10

20

50

2

2

1

1

î

1

1

3

2

2

2

1

1

1

crfci

5

2

2

2

I

1

1

10

4

4

3

3

2

1

20

6

6

4

3

2

50

11

11

9

7

5

3

where o>oo =• Kni aj. Thus, if

f ^ ^ O /"V>

then a finite N* ïs a unique minimum which satisfies (8).

EXAMPLE. Suppose that r(t) = X and aj = l~0. Then, from the results (ii),
a finite w* exists and is given by a unique minimum which satisfies

^ ^ j = 0
C3-C2

Table 2 shows the optimal number AT* for (c3-C2>/ci = l, 2, 5, 10, 20, 50
and c2/ci=2, 3, 5, 10, 20, 50 when /?=0.9.

3. MODEL 2: SHOCK DAMAGE

Whenever unit 1 fails, it acts as a shock to unit 2 and causes damage
with distribution G(x) to unit 2. The damage is cumulative and unit 2 fails
whenever the total damages exceed a failure level Z. The System is replaced
at failure of unit 2 or iV-th failure of unit I.
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TABLE 2

Optimal numbers N* to minimize Ci (N) when

pj (t) = [(X tytj!] e~Xt andaj = l -(0.9) K

• 1 . . . . . . . .

2

5

10

20 . . . . . . .

50

c2lc\

2 3 5 10 20 50

1 4 7 12 17 25

1 1 4 8 12 19

1 1 1 4 7 12

1 1 1 1 4 8

1 1 1 1 1 5

1 1 1 1 1 1

The probability that the System is replaced at Af-th failure of unit 1 is

GW (Z),

where G® (x) is the y-th convolution of G (x) with itself.

The mean time to replacement is

V G^ (Z) / Pj (t) dt.

The expected number of unit 1 failures until replacement is

N-l

(N - 1) G^'(Z)+ V u - 1) [G^"1) {Z) -

where G®Hx)=l for x>0.

Therefore, the expected cost rate is

N-ï

C2 (N) =

N-l

i=o
) (Z) /0°° Pj (t) dt
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where c\ =cost of one unit 1 failure, C2=replacement cost at iV-th failure of
unit 1» and c$= replacement cost at failure of unit 2 with

In particular, when Z goes to infinity, C% (N) is

(13)

which corresponds to (11) of [5].

We seek an optimal number N* which minimizes C% (N) in (12). From the
inequality C2(N+l)>C2(N), we have

, N-lN-l „oo N-l

i
N-l

(Z) f£°pN(t)dt fy
+GW(Z)1 >C 3 . (14)

Dénote the left side of (14) by L2(N).

L2(N+l)~L2(N)

N-l

[ G ^ ) ( Z ) G ( ) (Z) GW (Z) - G(N+V (Z)
02) 1

Suppose that either of [1-G ( W + 1 (Z)/G(JV)(Z)] or r(f) is stricüy increasing.
Then, Lq, (N) is also strictly increasing in N, and hence, an optimal number
N* is given by a unique minimum which satisfies (14).

In particular, suppose that G(x) = 1 - e~ftx. Then,

is decreasing in N. Further,
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lim
N -»• o o

L2(N) = ci Ir (oo)^2 G& (Z) / Pj (t) dt - /xZ \

r(oo) £G<>>(Z) / pj(t)dt\,

where

• (00) f; OU) (z)
7^ Jo

. î

then a finite N* is given by a unique minimum which satisfies (14). Further,
when r(0 = A, if 1 + ixZ>{c^-cx)l{c^-C2) then a finite N* exists uniquely,

/•oo

since r \
/"OO °°

• (oo) ƒ pj (t) dt = 1 and ^ G^')(Z) = l + (j,Z.

4. EXTENDED MODEL

In model 2, suppose that the system is replaced at time J, at failure of
unit 2 or Af-th failure of unit 1, whichever occurs first.

The probability that the System is replaced at time T is

J2PJ(T)G^(Z). (15)
i=o

The probability that the system is replaced at N-th failure of unit 1 is

(16)
j=N

The probability that the system is replaced at failure of unit 2 is

N-l oo

j=0 j=N
N
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It is evident that (15) + (16) + (17) = 1.

The mean time to replacement is

N-l

Pj(T)*
N

(T) G<'"> (Z) + GW {Z) f tPN-! (t) r (t) dt
N

 J°
Z)} / tp3^ (t) r (t) dt

3=0
[

3=0

The expected number of unit 1 failures until replacement is

N-l oo

Ü) (Z) + (JV-1) 53 K (T) GW {Z)
3 = N oo

- i)(eu-1)(z) - cw (z)] 53 ft-(D
• J V - 1 o o

Therefore, the expected cost rate is

C{T,N)
/ N-l

iV
+C3 ft

__ \

(18)

(19)

-, (20)

3=0

where c\ =cost of one unit failure <?2=replacement cost at JV-th failure of
unit 1, ^3= replacement cost at failiire of unit 2, and C4=replacement cost
at time T.

In particular, when T goes to infinity, C(T, N) agrées with C2 (N) in (12).
; when bo& M and Z go to infinity, (20) is
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which agrées with [1] of periodic replacement.

5. CONCLUSIONS

We considérée two types of failure interactions and discussed the optimal
replacement policies.

The above two models characterize many real Systems. The following
is an illustrative example from chemical industry. The System consists of
a métal container (unit 2) in which chemical reactions take place and the
température of the container is controlled by cold water pumped through a
pneumatic pump (unit 1). Consider the case where the pump f ails and as a
resuit the pressure inside can build up to lead to an explosion if the quantity
of reacting fluid is high. This situation is modelled by model 1 with otj = a
for ail j and a is the probability that the volume of fluid in the container
is high. A different scenario is the following. Whenever the pump fails, the
température of the tank rises and the container surface gets corroded. As a
conséquence, the thickness of the container decreases. The damage is the
réduction in the wall thickness and it is additive. The container fails when
the total réduction in the wall thickness exceeds some specified limit. This
situation is modelled by model 2. Note that without unit 1 failure, there is no
damage to unit 2 and hence it does not fail. If the container is preventively
maintained at time T before failure and is like new, the System corresponds
to an extended model.
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