The generalized Weber problem with expected distances
RAIRO - Operations Research - Recherche Opérationnelle, Volume 29 (1995) no. 1, pp. 35-57.
@article{RO_1995__29_1_35_0,
     author = {Carrizosa, E. and Conde, E. and Mu\~noz-Marquez, M. and Puerto, J.},
     title = {The generalized {Weber} problem with expected distances},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {35--57},
     publisher = {EDP-Sciences},
     volume = {29},
     number = {1},
     year = {1995},
     mrnumber = {1321539},
     zbl = {0835.90040},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1995__29_1_35_0/}
}
TY  - JOUR
AU  - Carrizosa, E.
AU  - Conde, E.
AU  - Muñoz-Marquez, M.
AU  - Puerto, J.
TI  - The generalized Weber problem with expected distances
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1995
SP  - 35
EP  - 57
VL  - 29
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1995__29_1_35_0/
LA  - en
ID  - RO_1995__29_1_35_0
ER  - 
%0 Journal Article
%A Carrizosa, E.
%A Conde, E.
%A Muñoz-Marquez, M.
%A Puerto, J.
%T The generalized Weber problem with expected distances
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1995
%P 35-57
%V 29
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1995__29_1_35_0/
%G en
%F RO_1995__29_1_35_0
Carrizosa, E.; Conde, E.; Muñoz-Marquez, M.; Puerto, J. The generalized Weber problem with expected distances. RAIRO - Operations Research - Recherche Opérationnelle, Volume 29 (1995) no. 1, pp. 35-57. http://archive.numdam.org/item/RO_1995__29_1_35_0/

1. A. A. Aly and A. S. Marucheck, Generalized Weber Problem with Rectangular Regions, Journal of Operational Research Society, 1982, 33, pp. 983-989. | Zbl

2. M. Bazaraa and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley, 1979. | MR | Zbl

3. R. G. Bland, D. Goldfarb and M. J. Todd, The ellipsoid method: A survey. Operations Research, 1981, 29, pp. 1039-1091. | MR | Zbl

4. C. D. Bennett and A. Mirakhor, Optimal Facility Location with respect to several Regions, Journal of Regional Science, 1974, 14, pp. 131-136.

5. Z. Drezner, Bounds on the optimal Location to the Weber Problem Under Conditions of Uncertainty, Journal of Operational Research Society, 1979, 30, pp. 923-931. | MR | Zbl

6. Z. Drezner, Sensitivity Analysis of the Optimal Location of A Facility, Naval Research Logistic Quaterly, 1985, 32, pp. 209-224. | MR | Zbl

7. Z. Drezner, Location of Regional Facilities, Naval Research Logistic Quaterly, 1986, 33, pp. 523-529. | Zbl

8. Z. Drezner and G. O. Wesoloswky, Optimal Location of a Demand Facility Relative to Area Demand, Naval Research Logistic Quaterly, 1980, 27, pp. 199-206. | MR | Zbl

9. Z. Drezner and G. O. Wesoloswky, Optimum Location Probabilities in the lp distance Weber Problem. Transportation Science, 1981, 75, pp. 85-97.

10. R. Durier and C. Michelot, Geometrical Properties of the Fermat-Weber Problem, European Journal of Operational Research, 1985, 20, pp. 332-343. | MR | Zbl

11. R. L. Francis and J. White, Facility Layout and Location, Prentice Hall, Englewood Cliffs, 1974.

12. M. Grotschel, L. Lovasz and A. Schrijver, The Ellipsoid Method and Combinatorial Optimization, Springer-Verlag, 1986. | Zbl

13. A. D. Ioffe and V. L. Levin, Subdifferentials of Convex Functions, Trans. Moscow Math. Soc., 1972, 26, pp. 1-72. | MR | Zbl

14. H. Juel, Bounds in the Generalized Weber Problem Under Conditions of Uncertainty, Operational Research 1981, 29, pp. 1219-1227. | MR | Zbl

15. D. Kendall, Some Problems in the Theory of Queues, Journal of the Royal Statistical Society Series B, 1951, 13, pp. 151-153. | MR | Zbl

16. T. Koshizuka and O. Kurita, Approximate formulas of average distances associated with regions and their applications to Location Problems, Mathematical Programming, 1991, 52, pp. 99-123. | MR | Zbl

17. R. F. Love, A Computational Procedure for Optimally Locating a Facility respect to Several Rectangular Regions, Journal of Regional Science, 1972, 12, pp. 233-242.

18. A. S. Marucheck and A. A. Aly, An Efficient Algorithm for the Location-Allocation Problem with Rectangular Regions, Naval Research Logistic Quaterly, 1981, 28, pp. 309-323. | Zbl

19. C. Michelot, The Mathematics of Continuous Location, in Special holde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), University of the Aegean/University of Liverpool, 1993, pp. 59-83.

20. F. Plastria, Continuous Location Anno, 1992, a Progress Report, in Special Isolde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), 1993, pp. 85-127.

21. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. | MR | Zbl

22. J. E. Ward and R. E. Wendell, A new Norm for Measuring Distance which yields linear Location Problems, Operations Research, 1980, 28, pp. 836-844. | Zbl

23. J. E. Ward and R. E. Wendell, Using block norms for location modelling, Operations Research, 1985, 33, pp. 1074-1090. | MR | Zbl

24. R. E. Wendell and A. P. Hurter, Location Theory, Dominance and Convexity, Operations Research, 1973, 21, pp. 314-320. | MR | Zbl