On a convolution operation obtained by adding level sets : classical and new results
RAIRO - Operations Research - Recherche Opérationnelle, Volume 29 (1995) no. 2, pp. 131-154.
@article{RO_1995__29_2_131_0,
     author = {Seeger, A. and Volle, M.},
     title = {On a convolution operation obtained by adding level sets : classical and new results},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {131--154},
     publisher = {EDP-Sciences},
     volume = {29},
     number = {2},
     year = {1995},
     mrnumber = {1337887},
     zbl = {0835.90094},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1995__29_2_131_0/}
}
TY  - JOUR
AU  - Seeger, A.
AU  - Volle, M.
TI  - On a convolution operation obtained by adding level sets : classical and new results
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1995
SP  - 131
EP  - 154
VL  - 29
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1995__29_2_131_0/
LA  - en
ID  - RO_1995__29_2_131_0
ER  - 
%0 Journal Article
%A Seeger, A.
%A Volle, M.
%T On a convolution operation obtained by adding level sets : classical and new results
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1995
%P 131-154
%V 29
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1995__29_2_131_0/
%G en
%F RO_1995__29_2_131_0
Seeger, A.; Volle, M. On a convolution operation obtained by adding level sets : classical and new results. RAIRO - Operations Research - Recherche Opérationnelle, Volume 29 (1995) no. 2, pp. 131-154. http://archive.numdam.org/item/RO_1995__29_2_131_0/

1. S. Abdulfattah, M. Soueycatt, Analyse epi/hypo-graphique, Séminaire d'Analyse Convexe, Montpellier, Exposé n° 13, 1991. | MR | Zbl

2. H. Attouch, Variational convergence for functions and operators, Pitman, London, 1984. | MR | Zbl

3. H. Attouch, Analyse épigraphique, Notes de cours de D.E.A., Montpellier, 1990.

4. J. Borwein, A note on ε-subgradients and maximal monotonicity, Pacific J. Math., 1982, 103, pp. 307-314. | MR | Zbl

5. N. Bourbaki, Espaces vectoriels topologiques, Chap. III, IV and V, Hermann, Paris, 1955. | Zbl

6. A. Brondsted, R. T. Rockafellar, On the subdifferentiability of convex functions, Proceedings AMS, 16, 1965, pp. 605-611. | MR | Zbl

8. V. F. Dem'Yanov, L. V. Vasil'Ev, Nondifferentiable optimization, Translation Series in Mathematics and Engineering, Optimization Software, Inc., New York, 1985. | MR | Zbl

8. D. Dubois, H. Prade, Operations on fuzzy numbers, Int J. Systems Sci., 1978, 9, pp. 613-626. | MR | Zbl

9. A. Elqortobi, Inf-convolution quasi-convexe des fonctionnelles positives, Recherche Opérationnelle, 1992, 26, pp. 301-311. | EuDML | Numdam | MR | Zbl

10. M. Fedrizzi, Introduction to fuzzy sets and possibility theory, In Optimization models using fuzzy sets and possibility theory, J. KACPRZYK and S. A. ORLOVSKI (Eds.), Reidel Publishing Co., pp. 13-26. | MR | Zbl

11. A. Hassouni, Sous-différentiels de fonctions quasi-convexes, Thèse de 3e cycle, Université Paul Sabatier, Toulouse, 1983.

12. N. Heukemes, V. H. Nguyen, J.-J. Strodiot, ε-optimal solutions in nondifferentiable programming and some related questions, Math. Programming, 1983, 25, pp. 307-365. | MR | Zbl

13. J.-B. Hiriart-Urruty, A. Seeger, The second-order subdifferential and the Dupin indicatrices of a nondifferentiable convex function, Proc. Math. Soc., 1989, 58, pp. 351-365. | MR | Zbl

14. M. Kolonko, Optimal compactification of a floorplan and its relation to other optimization problems-A dynamic programming approach, ZOR-Meth. Oper. Res., 1993, 7, pp. 75-95. | MR | Zbl

15. A.G. Kusraev, S. S. Kutateladze, Subdifferential calculus, Nauka Publishing House, Novosibirsk, 1987 (in Russian). | Zbl

16. C. Lemarechal, J. Zowe, Some remarks on the construction of higher-order algorithms in convex optimization, Applied Mathematics and Optimization, 1983, 10, pp. 51-68. | MR | Zbl

17. J. E. Martinez-Legaz, On lower subdifferentiable functions. In Trends in Mathematical Optimization, K. H. HOFFMANN, J. B. HIRIART-URRUTY, C. LEMARECHAL, J. ZOWE, Eds., International Series of Numerical Mathematics, 84, Birkhàuser-Verlag, Basel, 1988, pp. 197-232. | MR | Zbl

18. W. Oettli, Epsilon-solutions and epsilon-supports, Optimization, 1985, 16, pp. 491-496. | MR | Zbl

19. G. Passty, The parallel sum of non-linear monotone operators, Nonlinear Analysis TMA, 1986, 10, pp. 215-227. | MR | Zbl

20. J.-P. Penot, M. Volle, On strongly convex and paraconvex dualities, In Lecture Notes in Economies and Mathematical Systems, Springer-Verlag, 1990, 345, pp. 198-218. | MR | Zbl

21. R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1970. | Zbl

22. R. T. Rockafellar, Conjugate duality and optimization, In Regional Conference Series in Applied Mathematics, 1973, 16, SIAM Publications. | MR | Zbl

23. A. Seeger, Analyse du second ordre de problèmes non différentiables, Thèse, Université Paul Sabatier, Toulouse, 1986.

24. A. Seeger, Direct and inverse addition in convex analysis and applications, J. Math. Anal and Appl., 1990, 148, pp. 317-349. | MR | Zbl

25. A. Seeger, Limiting behaviour of the approximate second-order subdifferential of a convex function, J. Optim. Th. Appl., 1992, 74, pp. 527-544. | MR | Zbl

26. M. Sion, On general minimax theorems, Pacifics J. Math., 1958, 8, pp. 171-176. | MR | Zbl

27. M. Valadier, Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes, C. R. Acad. Sci. Paris, Série A, 1969, 268, pp. 39-42. | MR | Zbl

28. M. Volle, Convergence en niveaux et en épigraphes, C R. Acad. Sci.Paris, Série I, 1984, 299, pp. 295-298. | MR | Zbl

29. M. Volle, Quelques résultats relatifs à l'approche par les tranches de l'épi-convergence, Contributions à la dualité en optimisation et à l'épi-convergence, Thèse d'état, Université de Pau, 1986.

30. M. Volle, Approximations quasi-infconvolutives, Publication du Département de Mathématiques de l'Université de Limoges, 1986.

31. C. Zalinescu, Programare metematiča în spatii normate infinit dimensionale (In Roumain), manuscript in preparation.

32. J. Zowe, Nondifferentiable optimization - A motivation and a short introduction into the subgradient and the bundie concept, Computational Mathematical Programming, K. SCHITTKOWSKI, Ed., Springer-Verlag, Berlin, 1985. | MR | Zbl