
RAIRO. RECHERCHE OPÉRATIONNELLE

KONSTANTINOS PAPARRIZOS
A non improving simplex algorithm for
transportation problems
RAIRO. Recherche opérationnelle, tome 30, no 1 (1996), p. 1-15
<http://www.numdam.org/item?id=RO_1996__30_1_1_0>

© AFCET, 1996, tous droits réservés.

L’accès aux archives de la revue « RAIRO. Recherche opérationnelle »
implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1996__30_1_1_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Recherche opérationnelle/Opérations Research
(vol, 30, n° 1, 1996, pp. 1-15)

A NON IMPROVING SIMPLEX ALGORITHM
FOR TRANSPORTATION PROBLEMS (*)

by Konstantinos PAPARRIZOS (*)

Communicated by Jacques A. FERLAND

Abstract. - A simplex type algorithm for the Transportation Problem (TP) is présentée. TPs with
total demand D, m supply and n demand nodes are shown to be solved at most O(fi(m + n) D)
time and in at most fiD ~ fj,(^— l) /2 itérations, where p, = min { m. n } . The algorithm can be
initialized with a solution thaï is ne ither primai nor dual feasible. The objective function decreases
until a dual feasible solution is constructed and then it starts increasing.

Keywords: Transportation problem, simplex method, pivoting, strong bases, forest algorithms,
exterior point algorithms.

Résumé. - Un algorithme du type simplexe pour le problème de transport est présenté. Nous
prouvons que cette sorte de problèmes a demande totale D avec n points de demandes et m points
d'approvisionnements est résolu en temps O(fx)m + n) D) et avec iiD — fx(fx — l) / 2 itérations
au plus, \i — min {m, n }. L'algorithme peut être initialisé avec une solution qui est ni primale, ni
duale réalisable. La fonction objective décroît jusqu'à l'obtention d'une solution duale réalisable
et puis commence à accroître.

Mots clés : Problème de transport, méthode du simplex, pivot, bases portes, algorithmes de
Forest, algorithmes de point extérieur.

1. INTRODUCTION

Recently, a number of a new type of Exterior Point Simplex Algorithms
(EPSA) for network flow problems [1, 10 11] and the gênerai linear
programming problem [3, 12] have been developed Contrary to the well
known "Criss-Cross" method [13, 14], which is a non improving exterior
point simplex algorithm employing a completely combinatorial pivoting rule,
the new algorithms improve the objective function. The dual in nature EPSAs
are initialized with a dual feasible basic solution. Surprisingly enough, they
employ a pivoting rule, which is similar to that of the primai simplex

(*) Received July 1991.
C) University of Macedonia, Department of Applied Informaties, 156 Egnatia Str, P.O. Box

1591, 540 06 Thessaloniki, Greece.

Recherche opérationnelle/Opérations Research, 0399-0559/96/01/$ 4,00
© AFCET-Gauthier-Villars

L K. PAPARRIZOS

algorithm in the sense that the variable entering the basis is first chosen and
then the leaving one is chosen. A conséquence of the pivoting rule is that dual
feasibility may very well be destroyed in intermediate itérations. Preliminary
computational results on assignment problems indicate that EPSAs compare
favorably to other approaches, see [1].

The nature of EPSAs raise the foliowing question, which is stated in [10].
Is there an EPSA that can be initialized with a solution that is neither primai
nor dual feasible? In this paper we present an algorithm of this kind for
the Transplantation Problem (TP). It is shown that transplantation problems
with total demand D, m supply and n demand notes are solved in at most
O (jj,)m + n) D) elementary opérations and in at mos nD - H(JA - l) /2
itérations, where fj, = min {m, n } .

The algorithm uses forests instead of trees. If artificial variables are
introduced to the primai problem, the algorithms can be considered as
a simplex type method updating trees. In that case, the algorithm is in
fact a Phase I. However, contrary to the known Phase I methods, which
are only used to construct a feasible solution to initialize Phase II, our
Phase I algorithm is used to solve the original TP. Although the sum of
the artificial variables is nünimized, the original objective function is also
considered. If the initial solution is not dual feasible, the algorithm is
directed towards finding a dual solution. During this search the objective
function is nünimized. If the first dual solution constructed by the algorithm
is not an optimal solution to the TP, the algorithm starts a new search
for finding the optimal solution. During this second search the objective
function value increases from itération to itération and dual feasibility is
destroyed to be restored again only when optimallity is reached. All these
characteristics of the algorithm come from the fact that the reduced cost of
the incoming are increases from itération to itération. If the reduced cost is
négative (positive), the objective function of the TP decreases (increases).
Dual feasibility is reached for the first time when the reduced cost of the
incoming are becomes zero valued.

When our algorithm is specialized to assignment problems it becomes
a generalization of the signature method presented in [1], which imposes
no restriction on the value of the incoming arc reduced cost. Signature
methods for assignment problems, see [4, 5 and 8], are O (n3) dual simplex
algorithms. Another algorithm similar to ours is the primai simplex algorithm
developed by Akgül [2], Akgül's algorithm consists of stages. During the
itérations of a stage the reduced cost of the incoming are increases. Our

Recherche opérationnelle/Opérations Research

A NON IMPROVING SIMPLEX ALGORITHM FOR TRANSPORTATION PROBLEMS 3

algorithm generalizes Akgül's algorithm in two aspects. It consists of a single
stage and permits the reduced cost of the incoming arc to be unrestricted
in value.

The remaining of the paper is organized as follows. Next section is devoted
to preliminaries. The algorithm is formally described in Section 3 and its
correctness and complexity are shown in Section 4. In the last section some
properties of the algorithm are described and some computational efficiency
matters are discussed.

2. PRELIMINARIES

The Transportation Problem (TP) can be mathematically stated as follows:
m n

T P min ^ ^ c^ x%j

=i

%j = a « ï i = 1 , 2 , . . . , m ,

ii = b3> J = 1» 2 , . . . , n,

Xij > 0 , i = 1 , . . . , m , j = 1 , . . . , n ,

where a2 and fy are positive integers such that Y^ ai = V^ bj = D.
i=ï j=i

A èaj/c solution of (TP) is a spanning tree of the bipartite graph
G — {/. J, £ } , where ƒ = { 1 , 2? . . . , m } is the set of row nodes,
J = { l ? 2 , . . . , n } i s t h e s e t o f column nodes a n d E — {(i^ j) : i E I

andi € J } is the arc set. An arc (i, j) G £ is directed from the row node i
to the column node j . Associated with a spanning tree T there are the primai
variables Xi3 (T), computed from the relations x%j (T) = 0 for (i, j) £ T,
and the dual variables u% (T), i e J, and ^ (T), j G J, computed from
the relations u% (T) + ^ (T) = c8j, (i, j) G T. An arc (i, j) G T is called
degenerate, positive or négative, if a;̂ (T) is zero, positive or négative,
respectively.

Let T be a spanning tree rooted at a node r. The root can be either a row
or a column node. An arc (i, j) G T is upward, if it belongs to the path
joining the root with the row node i. Otherwise, it is a dôwnward arc.

vol. 30, n° 1, 1996

4 K. PAPARRIZOS

DÉFINITION 1: (Cunningham [6]). A rooted tree T is called a strong tree or
a strong basis if every degenerate are of T is downward.

A spanning forest F of G is a set of subtrees of G that span all nodes of
G. Given a forest F we can associate values to the primai variables x^ (F),
(z, j) G E and to the dual variables u% (F), i e l and VJ (F), j G J. It is
easily seen that if x%j (F), m (F) and VJ (F) satisfy x^ (F) = 0 for (i, j) £ F
and tij (F) + Vj (F) — c2J for (i, j) G F, then complimentaritly slackness
condition holds, z.e., it is #^ (F) wij (F) = 0 for each are (i, jf) G F , where
lüij (F) = cij — Ui (F) — VJ (F), is the reduced cost associated with the are
(i, jf). A forest F is called primai feasible, if the primai values Xij (F) > 0,
(i, j) G F , satisfy all the équations of (TP). F is called dual feasible, if
wij (F) > 0 for all (ï, j) G F . As the primai and dual solutions associated
with a forest satisfy the complimentarity slackness condition, a forest that is
both primai and dual feasible is an optimal solution to (TP). The trees that
constitute a forest are called component trees of the forest.

DÉFINITION 2: A spanning forest F of the graph G is called a strong forest
if every component (tree) of F is a strong tree.

A conséquence of Définition 2 is that every component tree of a strong
forest is rooted. A forest F ' is adjacent to a forest F , if F ' = F\(k, /)u(flï)̂>
where (fe, l) E F and (g, h) £ F or F ' = F U (3, /i), (3, ft) £ F .

3. ALGORITHM DESCRIPTION

The algorithm presented in this section moves between adjacent strong
forests F satisfying xij (F) > 0. It stops when a primai feasible forest
is constructed. We leave to the reader to describe the equivalent simplex
algorithm that updates trees, Le., the on that works one the phase I problem
constructed by introducing artificial variables to (TP).

The algorithm partitions every strong forest into two subforests Fs and
FD. Forest Fs is called the surplus subforest while the subforest FD

is called the deficit subforest. The surplus (deficit) forest contains all the
components of F , which are rooted at a row (column) node. The solution
xij (F) > 0 computed by the algorithm satisfies all the équations of (TP)
associated with the nodes that are not roots. Given a strong forest F and a
row (column) node p (q) we define the quantities

AP(F) = ap -Z{xpj(F) : (p, j) eF}(Bq(F)

= bq-V{(xiq{F) : (i,q)€F}).

Recherche opérationnelle/Opérations Research

A NON IMPROVING SIMPLEX ALGORITHM FOR TRANSPORTATION PROBLEMS 5

Clearly, F is primai feasible if Ap (F) = 0 for p G l and Bq (F) = 0 for
q G J. The quantities Ap (F) and iJ^ (F) are in fact the values of the artificial
variables associated with the équations of (TP) corresponding to nodes p and
q, respectively. As the algorithm is of simplex type the reader will have no
difficulty in understanding it from the following formai description.

STEP 0. (ïnitialization). Start with the initial forest FQ, which contains no
arc. Set Fo

5 = / and Fff = J. Also, set Ai (Fo) = aiy i = 1, 2, . . . , m and
Bj (Fo) = bj, j — 1, 2, . . . , n. Make every node a root and set t = 0.

STEP 1. (Entering arc détermination). If F t
5 = 0 , STOP (Ft is an optimal

forest to (TP)). Otherwise, compute

6t = wgh (Ft) = mm{wi3 (Ft) : i G F?", i G F t
D }

and adjoin arc (</, /i) to Ft.

STEP 2. (Leaving arc détermination). Let p(g) be the root of the
component tree containing row node g (column node h) and dénote by
Pt the unique path of Ft U (#, h) joining the root nodes p and g. Let also
P^~ (jPt~) be the set of arcs of Pt having the same (opposite) direction with
the incoming arc (p, h). Compute

Xfci (Ft) = min { xi3 (Ft) : (i, j) G Pf } (1)

and

et = min { Ap (F t), xw (JFl), ^ (Ft) }. (2)

In case of ties in relation (1), arc (&, l) is the first eligible arc met when the
path Pt is traced from p to q. Also, in case of ties in relation (2), et is the first
eligible quantity among Ap (Ft)9 xj~i (Ft) and Bq (Ft) examined in this order.

STEP 3. Update F t
5 , Ft

D according to the following cases:

Case 1: (a) et - Bq (F t), (b) et = xkl (Ft) and (A, /) G Ft
D,

Case 2: (a) et = Ap (F t), (b) et = xkl (Ft) and (fc, /) G F / .

(la): Let Ft* be the component containing column node h. Set
F/'XF/ and F t^x = F t

5 U Ft* U (g, h). The root g is no longer
a root.

Case (Ib): Let Ft* be the subtree eut off from the component tree containing
column node h when (fc, J) is deleted from Ft. Set F ^ — Ft

D\F^ and
F ^ ! = Ff U Ft* U (ö, /i). The roots do not change.

vol. 30, n° 1, 1996

K. PAPARRÏZOS

Case (2a): Let Ft* be the component tree containing row node g. Set
^ = Ft

D U Ft
D U (5, /i) and F £ a = F t

5\F t*. The root p is no longer
a root.

Case (2b). Let Ft* be the subtree eut off from the component tree
containing g when are (fe, 0 is deleted. Set F t^x = Ft

D U F t
D U (5, h)

and F ^ = F t
5\F t*. The roots do not change.

STEP 4. (Computation of new values of variables),
(a) Update the primai variables by the relations:

eti if (i , j) € P t
+ ,

= xij (Ft)

(b) Set

= Ai (Ft),

otherwise.

if otherwise, and

= Aj (Ft), otherwise.

(c) Update dual variables as follows:
Dual updates for Case 1:

5u if i£Ft\
öt} if jGF*}

= UJ (Ft) and vy (F t + i) = VJ (Ft), otherwise.

Dual updates for Case 2:
St} if ieF*}

and VJ (Ft+i) = Vj (Ft), otherwise.

(d) Set t ^~ t + 1 and go to Step L
Observe that dual updates take place only in the eut off subtree Ft*. It is

also easily verified that Wgh (Ft+i) = 0 and that complementarity slackness
holds throughout the computation.

The algorithm perforais four types of itérations that correspond to the four
Cases la, \b, 2a, and 2b of Step 3. In the itérations of type la or \b (2a
or 2b) a tree component or a subtree is transferred from the surplus (deficit)
forest to the deficit (surplus) forest. Figure 1 illustrâtes a type le itération.

Recherche opérationnelle/Opérations Research

A NON IMPROVING SIMPLEX ALGORÏTHM FOR TRANSPORTATION PROBLEMS

(k)

F;

Figure 1. - An itération of type U>.

4. ALGORÏTHM CORRECTNESS AND COMPLEXITY

The aim of this section is to show the following resuit.

THEOREM i : The algorithm solves (TP) correctly in at most O (M (m -f n) D)
elemenîary opérations, where fi — min {m, n}.

The proof of the theorem is based on the following lemmas. We first show
correctness of the algorithm.

LEMMA 2: Let F be the last forest generated by the algorithm. Then F
is primai feasible.

Proof: The pivoting rule and the way primai variables are updated assure
that xij (F) > 0, (i, j) ç E. The algorithm has stopped because Fs = 0 .
This implies that F (x) satisfies all the équations of (TP) that correspond to

vol. 30, n° 1, 1996

8 K. PAPARRIZOS

row nodes. This in turn implies that the équations of (TP) that correspond
to column nodes are also satisfied, Hence, F is primai feasible. D

The following two lemmas will be used to show that a forest F is dual
feasible in the case Fs = 0 . These lemmas generalize lemmas 2 and 3
of [1] so that 6t can be négative. Although some parts of the proofs are
similar to the ones presented in [1], we present complete proofs for the
sake of completeness.

In the following lemmas we will use the following sets of arcs

where R is the set of row nodes and C is the set of column nodes.
Equivalently, the set A(F) (B (F)) contains the arcs directed from a row
node of Fs (FD) to a column node of FD (Fs).

Let

% = min { wij (Ft) : (i, j) G B (Ft) }, if B (Ft) £ 0

= oo if

LEMMA 3: If Ft
D and Ff are dual feasible and êt + 6f

t > 0 then
«t+i + «i+i > 0.

Proof: We prove the lemma only for itérations of type 1. The proof for
itérations of type 2 is omitted as being completely analogous.

Assume that Ft+i is obtained from Ft by an itération of type 1. Let

A 1 (Ft) = { (i , j) e E : i e Ff, j € * & }

a n d A
Then St+i = min {ei, e% } , where

ei = min { wij (Ft+i) : (t, j) G Ai (Ft) }

£2 = min { wij (Ft+i) : (i, j) G A2 (Ft) }•

As F # ! Ç Ft
D, we have Ai (Ft) ç A2 (Ft). As it is

wij (Ft+i) = Wij (Ft) for (*, j) e Ai (Ft),

we have ei > èt. For the arcs (i, j) G A2 (Ft) we have

= ca - (m (Ft) - St) - VJ (Ft) = wi} (Ft) + 6t.

Recherche opérationnelle/Opérations Research

A NON IMPROVING SIMPLEX ALGORITHM FOR TRANSPORTATION PROBLEMS

As nodes i, j G F^ and F^ is dual feasible, we have w%j (Ft) > 0 and,
hence, s% > êf, Clearly, 6*+i = minjei , £2 } > St.

Let

Bi (Ft) = {(•, j) € E : i G F & , j G Ft
S }

and

^ (f *) = {(i, j) G 5 :. i G F&, j G F / } .

Then <5̂ +1 = minfe^, 62 }, where

ei = min { ̂ (F t + 1) : (i, j) G B1 (Ft) }

and

4 = min{wij (F t + i) : (i, j) G S 2 (Ft) }.

As Bx (Ft) Ç £ 2 (Ft) and w0- (F t + i) = ^ (Ft) for ail (i, j) € Bi (F t),
we have e\ > S't > —et (by the induction hypothesis. For (i, j) G B2 (Ft)
we have

Wij (Ft+i) = cij - Ui (Ft) - (VJ (Ft) + 6t) = «/y (Ft) - St.

As nodes i, j G F/^ and F t
D is dual feasible, we have WJJ (Ft) > 0 and

hence, 62 > —St. Therefore <^+1 > -^t .
Now we can easily show that, 5t+i + ^t+i ^ t̂ — t̂ = 0. D

LEMMA 4: If Ft
s and Ft

D are dual feasible and St + Sf
t > 0, then Ft

s
+1

and F^rl are also dual feasible,

Proof: As in Lemma 3 we are restricted on itérations of type 1.
As F^x Ç Ft

D and Ft
D is dual feasible, F ^ is also feasible

As Ff+i = Ft
s U Ft* U (g, h) and Ft

s, Ft* are dual feasible, it remains
to examine edges (i, j) such that i G Ft

s, j G F / or i G Ft*, jf G Ft
s\ If

i G Ff and i G Ft*, then

= % - ui (Ft) - (Uj (Ft) + êt) = wtj (Ft) - St.

As (i, j) G A (Ft), we have w%j (Ft) > St and, hence,

If i G F / and j G Ff, then

u;0- = (F t+i> = Cij - (u% (Ft) ~ St)St) - UJ (Ft) = tüy (Ft) + 6t.

vol. 30, n° 1, 1996

1 0 K. PAPARRIZOS

As (i, j) G B(Ft), we have wij (Ft) > 6f
t and, hence

wij (Ft+i) > 6t + 6Ï > 0

(by the induction hypothesis). D

LEMMA 5: The lastforest F generated by the algorithm is otptimal to (TP).

Proof: Using Lemmas 3 and 4 and a simple induction on the number
of itérations t, we show that F is'dual feasible. As for the last forest F
it is F = FD (because Fs — 0) , F is dual feasible. By Lemma 2, F
is also primai feasible. As complementarity slackness holds, F is optimal
to (TP). D

Our analysis so far showed that the algorithm is correct. The following
lemmas will be used to device upper bounds on the number of itérations
and the number of elementary opérations.

LEMMA 6: Every forest generated by the algorithm is a strong forest.

Proof: The proof is by induction on the number of itérations. The initial
forest Fo contains no arc. Hence, it is a strong forest. Assume now that Ft is
a strong forest. In order to show that i*i+i is also a strong forest it suffices
to examine the arcs of Pt, becaue the arcs (i, j) $ P change neither status
(they are upward or downward in F% and remain upward or downward in
jPt+i) nor value Le., X{j (i*i+i) = %ij (Ft) for (i, j) £ P, see Step Aa in
the algorithm description.

Let e G i*i+i> t>e a n upward arc. There are two cases to be considered,
e\ > 0 and et = 0.

Case 1. et = Xki (Ft) > 0. There are four subcases to be considered,
one for each type of itération. We first prove the lemma for the type \b
itérations. In that case (fc, l) G F^.

If e is an arc of the subpath of Pt joining the root row node p G Ff
and the column node h G F / \ then e G Pt~. From the pivoting rule
described in Step 2 we conclude that xe(Ft) > et- Otherwise, Le., if
xe (Ft) = et = xj~i (Ft), (fc, /) would not be the outcoming arc at itération
t. From relation (3) we have xe (Ft+\) = xe (Ft) — et > 0, as desired.

If e is an arc of the path joining row node k G F^ and the root column
node q then e G Pt

+'. As xe (Ft) > 0 and et > 0 we have from relations
(3) that xe (F t + 1) = xe (Ft) + et > 0.

Recherche opérationnelle/Opérations Research

A NON IMPROVING SIMPLEX ALGORITHM FOR TRANSPORTATION PROBLEMS 1 1

The proof for type la itérations is identical except that the path joining
nodes k and q does not exist. The proof for the itérations of type 2a and
2b is similar.

Case 2, et — 0. We show first that Ap (Ft) > 0. This implies that itération
t is not of type 2a. Assume not, Le., assume that Ap (Ft) — 0. Consider the
itération 0 < r < t-1 such that Ap (Fr) > 0 and Ap (Fr+i) = 0. As p e Ff
is a root node, itération r was not of type 2a. Now, relation Ap (i^V+i) = 0
implies that Ap(Fr) — er, a contradiction. It is also easily verified that
itération t is not of type 2b. Hence, itération t is either of type la or of type
16. In both cases it is easily seen that no degenerate arc of Ft becomes an
upward arc of i*l+i. Hence, every degenerate arc of F*+i is downward. D

A pivot opération is called degenerate if et — 0. We give now some
additional définitions, which will be used to dérive an upper bound on the
number of consécutive degenerate pivots.

DÉFINITION 3: A column node j is called degenerate if it is either a
root (of the deficit forest) such that Bj (F) = 0 or a non-root node such
that xij (F) = 0, where (i. j) is the unique downward arc incident to j .
Degenerate row nodes are similarly defined.

DÉFINITION 4: The level L (F) of a strong forest F is given by the relation:
L(F) = Z(Bq(F) : q is a root of Ft

D).

It is easily verified that L(F) = E (Ap (F) : p G / is a root of F 5) .
Also, an easy inductive argument on the number of itérations shows that
every component of the surplus forest is rooted at a non-degenerate row
node. Consequently, we have L (F) = 0 for the last forest F generated
by the algorithm.

LEMMA 7: If F is not a primai feasible strong forest generated by the
algorithm, the number of degenerate column nodes of F® is no greater than
M = min { m — 1, n — 1}.

Proof: As forest F is strong (by Lemma 6) but not primai feasible, there
is at least one (column) root of FD, say g, such that Bq (F) > 0. hence,
M < n - 1. Observe now that if a column node is degenerate, its degree
is at least one. Hence, every row node can generate at most one degenerate
column node. As F is not primai feasible, Fs contains at least one row
node. Consequently, it is also M < m — 1 and the proof follows. D

vol. 30, n° 1, 1996

12 K. PAPARRIZOS

Proof ofTheorem 1: In Lemma 5 we showed that the last forest is optimal
to (TP). We dérive now the complexity bound stated in the theorem.

It is easily seen that the level of the forests generated by the algorithm is
not increasing. Let Fj be the first forest in level, say r, and Fj, i < j , be the
first forest in level less than r. From the pivoting rule we easily see that if a
degenerate pivot is performed on Ft, i < t < j < 1, at least one degenerate
column node of F® is transferred to Ff+l. As by Lemma 7 there are at
most M degenerate column nodes in Ff*, after at most M itérations a strong
forest Fj—i containing no degenerate column node in F^-^ is constructed.
Then a level reducing itération of type 2 is performed. Hence, it takes at
most /i = 'M + 1 = min {m , n} itérations to reduce the level by at least
one unit. As the level of the initial strong forest is D, after at most fi D
itérations a strong forest F of level zero is constructed.

The work required to update a forest is precisely that of updating a tree,
Le., O (mn). This bound comes from the number of comparisons needed to
détermine the are to be adjoined. It is well known that all the other work is
O (m + n). Hence, we have shown so far that the complexity bound on the
number of elementary opérations is O(iJbmnD).

In order to dérive the bound stated in the theorem, it suffices to show that
the local work required to détermine all the arcs adjoined in a single level is
0 (mn). During the itérations in a given level the set J il F® is decreasing
and the set I n Ff is increasing. We can store for each fixed j G J f) F^,
the row node i € I n Ff, where Wij is minimal. After an itération we only
have to compare this value to those tüjy, where k has been added to the
surplus forest. Hence, every are is examined at most once. Hence, the work
for determining all incoming arcs in a level is O (mm). As the remaining
work in the level is O(fj,(m + n))9 the proof follows. D

In Theorem 1 we have shown that the number of itérations is bounded by
li D. In the next theorem a better bound is derived.

THEOREM 8; The algonthm stops after at most [xD — ^ (/i — l) / 2 itérations.

Proof: It suffice to show the statement:

(*) The number of itérations in level D - k9 k = 0, 1, 2, . . . , £ > - 1,
is at most k + 1. Indeed, if statement (*) is correct, there are at most
1 + 2 + . . . + (// — 1) = M (M ~ l) / 2 itérations in the first \x — 1 levels
(fc = 0 , 1 , . . . , /i—2 and (by Lemma 7 and Theorem 1) at most \i (D—fi+1)
itérations in the remaining D-(fi-l) = D — fi+1 levels. Hence, the number
of itérations is at most /Lt (/x — l) / 2 + p (D - fi + 1) = JJ,D - /x (/x - l) / 2 .

Recherche opérationnelle/Opérations Research

A NON IMPROVING SIMPLEX ALGORITHM FOR TRANSPORTATION PROBLEMS 1 3

We show now that statement (*) is correct. Let F be the first forest in
level D - fe, M (FD) be the number of degenerate columns in FD and
N (FD) the number of row nodes in FD. It is well known that:

L (F) = S (Bq (F) : q is a root of FD),

= E (bj : j eJ and j 6 FD) - S (a* : i € / and i G F D) .

Clearly, S (6, : j G J and j E F D) < P . As a; > 1, we have
S (a; : i € / a n d z G FD) > N (FD).

From Lemma 7 we have N (FD) > M (FD) and, hence

-E(oi : ieI&ndieFD)< -M(FD).

Therefore, we have

D-k = L(F)<D-M (FD)

and, hence, M (FD) < k. By Theorem 1 now the number of itérations in
level D - k is bounded by M (FD) + 1 < k + 1 completing the proof. •

In [1], it has been shown that St < ft+i. It is easily seen that this relation
holds for our algorithm as well. Consequently, if 6Q < 0, the objective
function initially decreases until a forest Ft such that 8% > 0 is constructed.
In subséquent itérations the objective function decreases.

Closing this section, we point out that the algorithm handles sparse TPs in
a very simple way. If the algorithm is applied to a sparse (TP) there might be
no arc eligible to be adjoined at some itération. In this case, it follows easily
from the structure of the forest that (TP) has no primai feasible solution.

5. CONCLUDING REMARKS

Besides the obvious problems of extending the algorithm to more gênerai
linear problems, the worst case analysis of the current algorithm remains an
open problem. It particular, the bound on the number of itérations may not
be the best one. In order to illustrate this fact we introducé the notion of the
stage of the algorithm. A stage of the algorithm consists of the maximum
number of consécutive forests (itérations) Ft, such that Ft

D D F^_x. From
the analysis of Section 4, we can easily see that the level may decrease more
than once during the itérations of a stage. It is also easily seen that the
maximum number of itérations in a stage is n, implying that the complexity
of a stages O (n (m + n)). Consequently, the détermination of the maximum
number of stages is crucial in deriving the algorithm complexity.

vol. 30, n° 1, 1996

1 4 K. PAPARRIZOS

The computational efficiency of algorithms for TPs (and assignment
problems) in highly dependent on the initial solution. As our algorithm
improves primai feasibility, the initial solution is the worst starting point
(the level is the maximum possible). We can very easily remedy this
computational disadvantage as follows. Construct a dual feasible forest F
by joining row node i to column node q such that aq = min { c^ : j E J }.
Make all the column nodes roots and compute Bj (F) for all j e J. If
Bj (F) > 0, the component rooted at j belongs to FD. The remaining
components belong to the surplus forest and they are rooted at properly
chosen (row) roots so that they are strong trees (the details are left to the
reader). The forest F is in fact the Hung-Rom [7] heuristic extended to
TPs. In [9], it has been shown computationally that the Hung-Rom tree
is a good starting heuristic for assignment problems. So, our algorithm
can be initialized with a good starting forest. As this modified algorithm
possesses all the good computational properties of the efficient algorithm for
assignment problems described in [1], we expect that it is also efficient in
practice. However, this remains to be verified computationally.

ACKNOWLEDGEMENTS

The author wishes to thank two unknown référées for their constructive comments that greatly
improved the présentation of the paper.

REFERENCES

1. H. ACHATZ, P. KLEINSCHMIDT and K. PAPARRIZOS, A Dual Forest Algorithm for the
Assignment Problem, D1MACS, 1989, 4, pp. 1-10.

2. M. AKGÜL, A Genuinly polynomial Primai Simplex Algorithm for the Assignment
Problem, SERC Report, IEOR 87-07, 1987, Bilkent University.

3. K. ANSTRIECHER and T. TERLAKY, A Monotonie Build-Up Simplex Algorithm for
Linear Programming, Opérations Research, 1994, 42, pp. 556-561.

4. M. L. BALINSKI, Signature Methods for the Assignment Problem, Opérations
Research, 1985, 33, pp. 527-537.

5. M. L. BALINSKI, A Compétitive (Dual) Simplex Method for the Assignment Problem,
Mathematica! Programming, 1986, 34, pp. 125-141.

6. W. H. CUNNINGHAM, A Network Simplex Algorithm., Mathematica! Programming,
1976, 11, pp. 105-116.

7. M. S. HUNG and W. O. ROM, Solving the Assignment Problem by Relaxation,
Opérations Research, 1980, 28, pp. 969-982.

8. D. GOLDFARB, Efficiënt Dual Simplex Algorithms for the Assignment Problem,
Mathematica! Programming, 1985, 33, pp. 969-982.

Recherche opérationnelle/Opérations Research

A NON IMPROVING SIMPLEX ALGORITHM FOR TRANSPORTATION PROBLEMS 1 5

9. P. KLEINSCHMIDT, C. W. LEE and H. SCANNATH, Transportation Problems Which
can be Solved by the Use of Hirsch-paths for the Dual Problems, Mathematical
Programming, 1987, 37, pp. 153-168.

10. K. PAPARRIZOS, An Infeasible (Exterior Point) Simplex Algorithm for Assignment
Problems, Maîhematical Programming, 1988, 57, pp. 45-54.

11. K. PAPARRIZOS, A Network Exterior Point Algonthm, Presented at the EURO X
Conference on Operational Research, Beograd, Yug, 1989.

12. K. PAPARRIZOS, An Exterior Point Simplex Algorithm for General Linear Problems,
Annals of Opérations Research, 1993, 32, pp. 497-508.

13. T. TERLAKY, A Convergent Criss-Cross Method, Math. Oper. und Stat. sèr.
Optimization, 1985, 16, pp. 683-690.

14. S. ZIONTS, The Criss-Cross Method for Solving Linear Programming Problems,
Management Science, 1969, 75, pp. 426-445.

vol. 30, n° 1, 1996

