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NEW CONVERGENCE RESULTS
ON AN ALGORITHM FOR NORM CONSTRAINED
REGULARIZATION AND RELATED PROBLEMS (*)

by José Mario MARTINEZ (*) and Sandra Augusta SANTOS ("*")

Communicated by Pierre TOLLA

Abstract. - The constrained least-squares regularization of nonlinear ill-posed problems is a
nonlinear programming problem for which trust-region methods have been developed. In this paper
we complement the convergence theory of one of those methods showing that, under suitable
hypotheses, local (superlinear or quadratic) convergence holds and every accumulation point is
second-order stationary.

Keywords: Trust-region methods, Regularization, 111 Conditioning, Ill-Posed Problems,
Constrained Minimization, Fixed-Point Quasi-Newton methods.

Résumé. — La régularisation, sous forme de moindres carrés contraints, de problèmes non-
linéaires mal posés est un problème de programmation non-linéaire, pour lequel ont été proposées
des méthodes de régions de confiance (trust-région). Nous complétons dans cet article la théorie
de la convergence de l'une de ces méthodes en montrant que, sous des hypothèses appropriées,
il y a convergence locale (superlinéaire ou quadratique), tandis que tout point d'accumulation est
stationnaire du second ordre.

Mots clés : Méthodes de région de confiance, régularisation, mauvais conditionnement, problèmes
mal posés, minimisation contrainte, point fixe, méthodes quasi-newtoniennes.

1. INTRODUCTION

Many practical problems in applied sciences and engineering give rise to
ill-conditioned (linear or nonlinear) Systems

F(x) = y (1)
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where F : Rn —> Rm. Neither "exact solutions" of (1) (when they exist), nor
global minimizers of ||F(x) — y\\ have physical meaning since they are, to a
great extent, contaminated by the influence of measuring and rounding errors
and, perhaps, uncertainty in the model formulation. From the numerical point
of view, this inadequacy usually produces "unreasonably large solutions" x,
for some problem-dependent vectorial norm. On the other hand, problems
like (1) usually come from discretization of ill-posed infinité dimensional
problems, for which bounds on the function or derivatives are generally
known.

The most popular way to deal with these problems is through Tikhonov
regularization [23]. This amounts to consider, instead of (1), the regularized
problem

Minimize \\F(x) - yf + v\x\2 (2)

where | • | is an appropriate (problem-dependent) norm and /x > 0 is a
regularization parameter. However, for very ill-conditioned problems, an
extremely small value of JJL produces a very small norm of x(p) (the solution
of (2)) and, so, useful characteristics of the estimator x can be lost by the
effort of regularization. As a simple example, consider the System

X! + X2 = 1, (1 + W'^X! + a?2 = 1 - 10~6 - 10~2 (3)

which was obtained as a perturbation of

a?! + x2 = 1, (1 + lCT6);ri + x2 = 1 - 10"6. (4)

The exact solution of (4) is (—1,2), while the exact solution of (3), which
coincides with the solution of (2) for /x = 0, is « (-10001.0,10002.0).
However, for ail /x G [ ÎO^IO" 2 ] the solution of (2) is « (0.5,0.5), and
||a;(/x)j|2 decreases monotonically for /x > 1Ö""2.

This phenomenon motivated some authors to develop regularization
procedures where the norm of the solution is controlled directly, and not
through the regularization parameter. See [24, 10]. With this approach, instead
of (2), the following problem can be considered:

Minimize \\F(x) - y\\2 subject to |s | < 07 (5)

where, generally, || • || is the Euclidian norm and | • | dépends on the problem
and, frequently, reflects some tolérance for the variation of the unknown on
the considered domain. Vogel and Heinkenschloss used trust-region methods
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for solving (5). The feasible région of (5) is, generally, an ellipsoid (which can
be reduced to an Euclidian bail by a change of variables). Clearly, the amount
of structure of an ellipsoidal constraint is too much appealing to be ignored
by a linéarisation. So, in the above mentioned works, trust-région methods
were used, keeping the feasible région in its original form. Consequently, the
subproblems to be solved consist of the minimization of a quadratic on the
intersection of two Euclidian balls. In [24] and [10] only convex quadratic
models are considered, so that the subproblem of minimizing the quadratic
in the two-ball intersection is not hard. However, when F(x) is nonlinear,
the Hessian of the objective function of (5) can have négative eigenvalues
and, so, it becomes désirable to consider more gênerai quadratic models.
The subproblem of minimizing an arbitrary quadratic in the intersection of
two balls turned out to be tractable only after the characterization of local-
nonglobal minimizers of quadratics on sphères, given independently in [15]
and [13]. Using this characterization, a suitable algorithm for solving the
subproblem was proposed by the authors in [16]. In that work, it was also
developed a global convergence theory for a trust région algorithm with
approximate solutions of the subproblems. Moreover, the theory of [16] is
not restricted to bail domains and can be applied to gênerai closed feasible
régions, although, of course, its applicability is restricted to the case in which
the subproblems are solvable, at least approximately.

One of the main motivations for developing the theory in a genera! setting
is the considération of problems where the domain is the intersection of the
level sets of two (or more) quadratics which, in the regularization framework,
can represent bounds on two (or more) different norms of derivatives of
the unknown. Recent research on the minimization of quadratics on the
intersection of quadratic domains (cf. [18]) indicate that subproblems like
that will be probably solved in a satisfactory way, from the computational
point of view, in the near future. See [21, 25]. Other applications of this
subproblem can be found in [20, 4, 6].

The present research compléments the convergence results of [16], In
fact, in [16] a global convergence theory was developed, but nothing was
said about local speed of convergence or convergence to second order
stationary points. The main objective of this paper is to fill those gaps. We
assume that, at the final stages of the trust-région algorithm developed in
[16] the active constraints at the solution are identified (this was proved,
under suitable hypotheses, by Bitar and Friedlander [2]), so that, in the
end, the algorithm becomes a trust-région algorithm for equality constrained
optimization. Studying the algorithm under this point of view, we give
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sufficient conditions for local superlinear and quadratic convergence and we
prove that stationary points satisfy second-order stationary conditions.

Although the main practical application of our algorithms corresponds to
the case where the domain is a bail (ultimately, a sphère), we have strong
reasons for developing the theory in a more gênerai context. In fact, as we
mentioned above, we have in mind regularizing domains formed by (one or
more) quadratic constraints and we are optimistic with practical progress on
the resolution of the corresponding subproblems. Moreover, in these cases,
nonregular points (points where the gradients of the active constraints are
linearly dependent) can appear and, so, we wish to develop a theory that is
not based on the usual regularity assumption as a constraint qualification for
optimality. This is the main reason for not supporting our proofs on local
coordinates, or related differential geometry arguments.

The organization of the paper is as follows: in Section 2 we describe a
Local Algorithm for solving the Equality Constrained Minimization Problem.
The local algorithm is well defined in a neighborhood of a point that satisfiês
the second-order sufficient conditions for local minimizer. We prove local
convergence and superlinear convergence, if the Hessian approximations
satisfy a Dennis-Moré condition. Under the Dennis-Moré hypothesis, we
also prove that the itérations of the local algorithm produce sufficient
descent of the objective function. The main ingrédient for the proofs on
this section is the theory of Fixed-Point Quasi-Newton methods [14]. In
Section 3, we describe the trust-région method as a gênerai algorithm
for equality constrained minimization. Global convergence to first-order
stationary points follows from the results of [16]. Hère we prove that, if we
use true Hessian matrices, every accumulation point must be second-order
stationary. Finally, we prove that, in a neighborhood of a point that satisfiês
second-order sufficient conditions, the local algorithm and the trust-région
algorithm coincide, so the trust-région algorithm also has local convergence
properties. In Section 4, we show some numerical examples concerning the
regularization problem. Conclusions are given in Section 5.

2. THE LOCAL METHOD

In this section we define a local algorithm for solving the Equality
Constrained Minimization Problem. By this we mean that we introducé
a method that is well defined in a neighborhood of an appropriate solution,
we prove convergence of the method if the initial point is close enough to
this solution, and we give conditions for superlinear convergence. Let us
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define the Equality Constrained Minimization Problem as follows:

Minimize f(x)

subject to h(x) = 0,

where ƒ : Rn -> R, h : Rn -> Rm, ƒ, h G C2(FP). We dénote by fc'(a;)
the Jacobian matrix of h{x) and we define S = {x G Rn \ h(x) = 0}. From
now on, || - || will dénote an arbitrary norm on Rn.

The "local" method for solving (6) is defined by Algorithm 2.1 below.

ALGORITHM 2.1: Let xo G Un be a given initial approximation to the
solution of (6). Given xk G Rn, Bk a symmetrie n x r i matrix, we compute
x&+i as the solution y of

Minimize - (y - xk)
TBk{y - xk) + g£(y - xk)

subject to h(y) = 0,

where gk = ^(xfc) and 5 = Vf.

The solution of (7) exists and is unique only under special circumstances,
which we will study later. Algorithm 2.1 may be interpreted as a Fixed-Point
Quasi-Newton method in the sensé of [14]. Given x G Rn, B G Rnxn

symmetrie, we define $(#, 5 ) as the solution of

Minimize ~(y - x)TB{y - x) + g(x)T(y - x) ,

subject to h(y) = 0 .

So, Algorithm 2.1 may be written as

b, Bk).

As in [14], we dénote $'(#, B) the Jacobian matrix with respect to x. In
the following lemma, we compute this Jacobian.

LEMMA 2.1: Assume thatfor some x G Un
: B — BT, (8) has a unique

solution y, where rank h! {y) = m, fi G Um is the corresponding vector of
Lagrange multipliers, and

> 0 (9)
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for ail z e Af(hf(y)) (the null-space ofh'(y)), ^ 0 . Then

) ] l (10)

where P E R n x (^- m ) ^ & matrix whose columns farm a basis of J\f {h! {y)).

Proof: If y G R™ is a solution of (8), by the Lagrange optimality conditions,
we have that

This is a System of n + m nonlinear équations with variables x: y, B
and ii. Since rank h! {y) — m, and by (9), we have that the matrix

hM ti{y)T

is nonsingular. So, we can apply the
0

Implicit Function Theorem on (11), which, by dérivation with respect to
xy gives

hf(y) 0 /

where G is the matrix of derivatives of \i with respect to x. So,

_ î>'(x, B) + ti(y)TC = B- V2f(x) (12)

and
/>'(</)$'(x, S ) = 0 . (13)

By (13), there exists M e R ( n " m ) x n such that

(14)

Replacing (14) in (12), and pre-multiplying by PT, we obtain

r m i
J5 + ^ ^ V 2 ^ ( 2 / )

L i=i -I

2PM = PT(5 - V
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So,

V]} (15)
Therefore, (10) follows from (14) and (15). G

General Local Assumptions. Let us assume now that a;* G Rn is a
solution of (6) where h!(x*) has full rank and the second-order sufficient
conditions for local minimizer hold. That is

zTG*z > 0 (16)

for all z E N{h!{x*)),z ^ 0, where G* = V2/(:z*) + YALI h
and /x* E Rm is the vector of Lagrange multipliers associated to (6) and x*.

By the Implicit Function Theorem, these assumptions guarantee that
$(x,i?) and $ '(x,S) exist in a neighborhood Ü x D of (a:*, V2 ƒ{#*)),
Moreover, we can assume that ar4 — $(x+)JB) for all B € D and so,
by (10),

-i

The continuity of $'(a;+,5) with respect to 5 in D is guaranteed by
elementary arguments, with a possible restriction of L>. We also assume that
there exist Lrp > 0, such that

for all x E Ü, B e D. Clearly

$ ; {^,V 2 / (x*)) = 0". (18)

The discussion above allows us to prove the following local convergence
theorem.

THEOREM 2.2: Suppose that ƒ, /i, x* satisfy the General Local Assumptions.
Letr e (0, 1). Then there existe — e(r), 5 = 8{r) such that, if\\x — x*\\ < e,
and \\B - V2/(»*)ll < 6> we have

mxiB)-x*\\<r\\x-xm\\. (19)
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Moreover, if\\x$-x*\\ < s, and\\Bk-V
2f(x*)\\ < dforallk = 0, 1, 2 , . . .

the séquence generaled by Algorithm 2.1 is well defined, converges to x*,
and satisfies

\\xk+l — 07*11 <

for ail k = 0, 1, 2 , . . . .

Proof: The resuit follows from (17), (18) and (10) as a conséquence of
Theorem 3.1 of [14]. •

LEMMA 2.3: Assume the hypotheses of Theorem 2.2. Iffxk G Rm is the vector
of Lagrange multipliers associated to (7) then there exist ei, C2 > 0, fco^N
such that ||/ifc|| < ei and

- xk)
T(Bk + d l M^V2^Gxfc))(.xfc+1 - xk) >

\\xk+1 ~xk\\
2

for all k > ko.
Proof: It results from Theorem 2.2, the continuity of the Lagrange

multipliers, (16) and the fact that h{xk) - 0 for all k G N. D
The following theorem gives a Dennis-Moxé type condition for the

superlinear convergence of a séquence generated by Algorithm 2.1. The
Dennis - More type condition associated to superlinear convergence of SQP
algorithms [3] involves the effect of the approximation of the Hessian of
de Lagrangian on the incrément. It is interesting to observe that, when we
do not approximate the constraints by their linear model, the condition for
superlinear convergence is associated with approximations of the Hessian
of the objective function.

THEOREM 2.4: Assume the hypotheses of Theorem 2.2. Suppose that

Kmlp t-vV ( j ; .)](*T-* t)ll=( )
fc—oo \ \ X k + l - X \ \

Then
lim i! ï*±!zM = o. (21)

fc—>oo \\Xk — £ * | |

Proof: By elementary continuity arguments, (20) and (10) imply that

- xk\\

Therefore, (21) follows from Theorem 4.2 of [14]. D
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The following theorem states the order of convergence of the Newton
version of Algorithm 2.1.

THEOREM 2.5: Assume the hypotheses of Theorem 2.2. Suppose that, for all
k = 0, 1, 2 , . . . , Bk = V2 ƒ (xk). Then, there exists c > 0 such that

\\xk+1-x4<c\\zk-x4*+1. (22)

Proof: The desired result follows from Theorem 4.3 of [14]. •
The final result of this section is very important to support global

convergence properties of the method. Briefly, it states that, in an appropriate
neighborhood of x*, when the Dennis-Moré condition holds, a sufficient
descent property takes place.

THEOREM 2.6: Suppose that the General Local Assumptions hold, ƒ, /& E
C2(Rn), a E (0,1). Suppose that {xk} is an arbitrary séquence of points
that satifies the constraints of (6) and converges to x* and that {Bk} is a
séquence of matrices such that <&(xk} Bk) is well definedfor all k G N and

Then, there exists ko E N such that, for all k > ko,

Sfe) < f(xk) + ai

where sk — ®(%k, -Bfc) ~~ xk and tpk(s) = g^s + \sIBks for all s E Rn.

Proof: By the first order optimality conditions of (7), we have that there
exists ^k E Rm such that

Bksk +9k + ti(yk)
Tfik = 0

h(yk) = 0

for all k E N, where yk = xk + sk. By (24),

glsk = -(vk)Tti(yk)sk - slBksk. (25)

By Taylor's formula, we have, for i = 1 , . . . ,m,

hi(xk) = hi(yk) - tii(yk)sk + ~slV2hi(yk)sk + o(\\skf) . (26)
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Since hi(xt) = -frtù/fc) = 0? (26) implies that

fc + (nk)To{\\sk\\
2). (27)

By (25) and (27), we have that

k = - £ \Bk + ^ 53 ̂ V2h^k) sk - (t/fo^f), (28)

Now, by Taylor's formula, we have

f tik) = f M + gT
ksk + ^sT

kV
2f{xk)sk + 0(||Sfcf|2).

So, by (28), and the boundedness of \\pk\\,

I j" m

tsT ^Bk _ v2f(xk) + YtrfV2hi(yk)^sk + o(\\skf) . (29)

But, by the Dennis-Moré condition (23), \\[Bk - V2f(xk)}sk\\ = o(\\sk\\)
Thus, by (29),

1 f

L
o(\\sk\\

2)

where a € (a, l ) .
By Lemma 23 , there exist C2 > 0 and feo G N such that
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for ail k > ko. Since —C2||s-fc|[2 + p(||s&|[2) < 0 for large enough ky we
conclude that, for k large enough,

f(Vk) <

Hence, by (28) and (30),

— a

_

a — a

(30)

1=1

r ,1

m

Bk- ;

and the desired resuit follows from Lemma 2.3. D

Sk + 0{\\8kt)

3. THE TRUST-REGION METHOD

In this section we introducé a trust-région algorithm for solving the
Equality Constrained Minimization Problem (6). Throughout this section we
assume that fyh E Cz(Rn). We can think the method as an independent
one, or just as representing the final stages of a trust-région algorithm for
gênerai constrained optimization of the type considered in [16], when the
active constraints are identified.

ALGORITHM 3.1: Let XQ G Rn be an initial approximation, h(xo) = 0.
Let ai , (72, a, 7, Amin, A° be such that 0 < ai < <72 < 1, a G
(0,1), Amin > 0, A0 > Amin . Given xk e Rn such that h(xk) = 0, Afc >
Amin, Bk a symmetrie n x n matrix, the steps for obtaining xk+\ are:

STEP 1: A Ak,

vol. 31, n° 3, 1997
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STEP 2: Compute s&(A), a global solution of

Minimize îftk(s) = -sT B^s + g]: s

subject to h(xk + 5) = 0, (31)

11*11 < A
If V*(à*(A)) = 0, stop.

STEP 3: If

ƒ (a?* + s*(A)) < ƒ (x*) + a^fc(s*(A)), (32)

define o;fc+i = xfc + s* (A), A* = A.
Otherwise, choose A <— Anew G [aipfc(A)||,a2A], and go to Step 2.

Notice that the first trust-région radius Ak tried at each itération is not
smaller than a fixed parameter Am*n > 0. This requirement allows us to
take large steps far from the solution, eliminating artificially small trial
steps inherited from previous itérations. More subtle motivations for the
introduction of the algorithmic bound Amin corne from convergence proofs
to first-order stationary points of trust-région algorithms with approximate
solution of subproblems. In fact, in [16] (see also [8]) first-order stationarity is
obtained under a condition that, essentially, corresponds to uniform continuity
of Vf on the domain under considération. Other first-order convergence
proofs for constrained trust-région methods (see, for example, [5]) use
existence and boundedness of second derivatives. A careful analysis of
the proofs reveals that, in fact, the stronger assumption on ƒ can be avoided
in [16] and [8] due to the introduction of Amin, which forces the existence
of infinitely many rejected steps when, for some subsequence, A& —> 0.

The rest of this section is dedicated to prove that every limit point of a
séquence generated by Algorithm 3.1 satisfies optimality conditions. Since we
are potentially interested in domains where nonregular points appear naturally
(for example, intersection of level sets of quadratic functions), our arguments
must be gênerai enough to cope with that type of points. By this reason,
we decided to rely on more gênerai constraint qualifications and optimality
conditions than the usual ones in nonlinear programming. Arguments based
on feasible arcs will provide adequate tools for our objectives.

DÉFINITION 3.2: Given x € Rn such that h(x) — 0, b > 0, we say that
0 ; [—6, b] —>• Un is a feasible arc that passes through x if
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(a) h(<y(t)) = 0 for all t G [-6, b];

(b) 7 G C3([-6, b}), Y(0) ? 0;
(c) 7(0) = x.

THEOREM 3.3: If x* w a foca/ minimizer of(6), thenfor allfeasible arc 7
that pass through x+, we have that

5(x,)T7/(0) = (/o7)'(0) = 0 (33)

and

( / ° 7 ) " ( 0 ) > 0 . (34)

Proof: Trivial, considering that 0 is a local minimizer of ƒ o 7 : [—6, 6] —>
R i—11 1

Theorem 3.3 motivâtes the following définition.

DÉFINITION 3.4: We say that x* £ S is a second-order stationary point
of (2J) if for ail feasible arc 7 that passes through x*, (33) and (34) are
satisfied.

In Theorem 3.5 we establish that Algorithm 3.1 can stop only at a
second-order stationary point.

THEOREM 3.5: If Bk = V2/(x^) and Algorithm 3.1 stops at Step 2 (so
^fc(sfc(A)) = 0), then x^ is a second-order stationary point of(6).

Proof: Let 7 be a feasible arc that passes through Xk> Since f̂c(O) =
0 = ^fe(5fe(A)), we have that 0 is a solution of (31). Since 0 is an interior
point of the feasible région of (31), we have that ( ^ o 7)'(0) = 0 and
{$k ° 7)"(0) ^ 0* It is easy to see that these two conditions imply (33)
and (34). D

The following theorem states that, if Algorithm 3.1 does not stop at
Step 2, then the &-th itération terminâtes in finite time. Observe that we do
not assume that x^ is a regular point of the feasible région (gradient of the
constraints linearly independent). Of course, when the feasible set is a sphère,
ail its points are regular, but this is not the case when the domain is the
intersection of the level sets of two quadratics. As it is well known, defining
itérations of algorithms that linearize the constraints is very troublesome if
the gradients are not linearly independent.
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THEOREM 3.6: If x& is not a second-order staîionary point of (6) and
Bk = V2 ƒ(#&), then Xk+\ is well defined by Algorithm 3.1.

Before proving Theorem 3.6, we need to introducé a définition and a
technieal lemma.

DÉFINITION 3.7: Given 7, a feasible arc that passes through x, we define,
for A > 0

T + ( 7 , A) = min {t G [0, 6] | |fr(t) - 7(0)|| = A},

r_(7 , A) = max {t € [-6, 0] | ||7(t) - 7(0)H - A}.

LEMMA 3.8: Assume that j k : [-6,6] -^ Rn, 7 : [~b}b] -> R", b >
0, 7fc, 7 E C3([-6,6]) for all k E N, V(0) ^ 0, anrf

lim | j 7 f c - 7II3 = 0

where ||/?||3 = max {J|/3(i)||, \\(3'(t)\\, \\(3"(t)\\, ||/3»'{t)|| | t € [-6,6]}. Tfen
£&£re ejcto C3, C4, A > 0, fco G N S'MC/Z tóaf r+(7/^ A), r_(7fc, A),
T-f (7, A) and r_(7, A) ar^ w ÎI defined and

C3& < r+(7 f c , A) < c4A

c3A < |r_(7fcî A)| < c4A

c3A < r + ( 7 , A) < c 4 A

c3A < |r_(7, A)j < c4A

/or a// A G [0, A], ik > Jfeo.

Proof: The resuit follows from a slight adaptation of Lemma 2.1
of [16]. D

Proof of Theorem 3.6: Since Xk is not a second-order stationary point, there
exists a feasible arc 7 : [—6, b] —• S passing through x^ such that either

(fo1)
l(0)=g(xkf1'(0)<0 (36)

or ( /o 7 ) ' (0 )=0 , ( / o 7 ) " ( 0 ) < 0 . (37)

If (36) occurs, the resuit is proved in the same way of Theorem 2.3 of [16].
It remains to consider the possibility (37). Thus, we have

(ƒ o 7)"(0) = 7'(0)TV2ƒ(sfc)Y(0) + 9(xk)
Ti"(0) = a < 0 . (38)
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Let A > 0 be such that r+(A) = r+(7, A) and r_(A) = r_(7, A) are
well defined and let c3, C4 > 0 be such that (35) holds for ail A G [0, Â].
So, if A G [0, Â], from Step 2 of Algorithm 3.1 we have

where t — r+(A) or t = r_(A).
f2

Now, 7(t) = 7(0) + ty(O) + -Y ; (0 ) + o{t2), so,

j(Q) + o(t2) .

But, by (37), g(xk)
Tj'(0) - 0, and from (35) we have

MM*))
à? ^

f(7'(0^2

From (38) it follows that

< |(7 '(0)TV2ƒ(x f c)V(0)

a c |
A2 - 2 ' t2 *

Thus, from (39) we have

^ 2
( A ) ) < ^ < o .

A^o A2 - 2

Therefore, there exists A > 0 such that

^ 2 < « S ^ < 0 (40)

for all A e (O, I ] .
Define, for A > O,
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Then, if A G (0, Â~] we have by (40) and (41) that

f(xk + 5fc(A)) - f(xk) -

_ o(Pfc(A)H2) A2

|c5| A2

So,
Km p(A) = 1,

which implies that after a finite number of réductions in the trust-région
radius, the condition (32) is verified. As a resuit, Xk+i is well defined. D

Before establishing the global convergence resuit of Algorithm 3.1 we
define a weak regularity assumption that suits the level of generality intended
at this section.

DÉFINITION 3.9: We say that x G S is weakly regular if for allfeasible arc
7 : [—6,6] —• S that passes through x and for every séquence {xk}^-\ C S
converging to x there exist b\ G (0, b) and 7& : [—61, 61] —> S (k G N) a
séquence offeasible arcs that pass through X& such that

||7fc-7||3=0, (42)

where \\/3\\3 = max {||/?(i)||, ||/3'(i)||, \\/3"(t)\\, \\/3"'(t)\\ | t e [-h, h]}.
A direct conséquence of Theorem 3.1 of [16] is that every regular point

in the usual sensé of Nonlinear Programming (rank h!(x) — m, cf. [7, 12])
is weakly regular. The converse is not true. Consider, for example, the set
<S = {(0:1,0:2) G R2 | x\ = 0}. Clearly ail points in S are weakly regular but
not regular. Less trivial examples include intersections of tangent cylinders
or ellipsoids in Rn. The key point is that weak regularity is a completely
geometrie concept that does not depend on the algebraic représentation of
the surface.

The following is the main global convergence resuit of the paper, that
compléments the first-order global convergence theorem of [16]. We prove
that, if a limit point of a séquence generated by the algorithm with true
Hessians is weakly regular, then it is stationary, in the "second-order" sensé
given by Définition 3.4.

THEOREM 3.10: Assume that the séquence {zfc} is generated by
Algorithm 3J with B^ = V2/(:cfc), se* G <S is weakly regular and
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lim xj~ = x*, where Ki is an infinité subset ofM. Then x* is a second-order
fceKi
stationary point of problem (6).

Proof: We consider two possibilities:

inf A* = 0 (43)

and
inf Ak > 0. (44)

Assume first that (43) holds. Then there exists K2, an infinité subset of
i such that

So, there exists k<i G N such that A& < A m j n for ail k > ^2, k G K2.
But, at each itération k we try first the radius Afc > Amï;n. Thus, for ail
k G K3 = {k G K2 | A; > £2} there exist A& and s^(A^) such that 5fc(A^)
is a global solution of

Minimize

subject to h(xk + s) = 0 (46)

and

By the trust-région radius updating in Algorithm 3.1, for k G K3, we have

Ak > ai||5fc(Âfc)||. (48)

Therefore, by (45) and (48),

lim pfc(£*)||.= 0. (49)
/C6K3

Suppose that x* is not second-order stationary. Then, there exist b > 0,
7 : [—6, 6] —» S a feasible arc passing through x*, such that either

or
(ƒ ° 7);(0) = 9(x*) r'ity — 0 (51)
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and

(ƒ o 7 f (0) = Y(0)TV2 ƒ(a:*)^(0) + ff(^) V ( 0 ) = a, < 0. (52)

If (50) takes place, the proof follows the same structure of Theorem 3.2
of [16]., where first-order stationary conditions were considered. So, we have
to focus on (51) and (52).

Since x* is weakly regular and lim xj* — x*9 there exist &i E (0,6),

Jk : f—6ij6i] ~^ <5» (^ €= Ka), a séquence of feasible arcs passing through
Xk, such that

hfc - 7Ü3 - 0. (53)

By (53) and Lepima 3.8, there exist % € N and A > Ö such that
T-|_(7£.,. A), r_(7fc,.A), r+(7, A) and r_(7,A) are well defined for ail
k e K4 = {k e K3 |; k > jfe3}, A G [0, A). Moreover, (35) holds for ail
k G K4, A E [0, Â]. Let ^ e N be such that

for ail fe G K5 = {fc 6 K4 | k > k^}. There are two possibilities for
defining t^:

tk = T+(7 f e , ||sfe(Afc)t|) or tk = r_(7 f c î |

The convenient choice will be made below. Anyway, by Lemma 3.8,

C3||sfc(Afc)||: < \tk\ < C4||;Sfc(Âfc)t| (54)

for ail k G K5.

Now, since 'sjc(Aic) is the global minimizer of (46),

S tk) ~ 7fc(0))

h )VH**\ Tk ) (55)

But, by Taylor's theorem, since, by (53) the third derivatives of 7& are
bounded,

Recherche opérationnelle/Opérations Research



NEW CONVERGENCE RESULTS FOR REGULARIZATION 287

From (55) and (56) we have

~5k)) < f(Y*(O)r V2

Exchanging tk by atk, where a = ±1 is chosen such that

( 5 7 )

(58)

it follows from (54), (57) and (58) that

i/jk(sk(Kk)) <

< y(7fc(0)TV2/(a;fc)7fc(0)

Therefore, by (49), (52) and (53),

liminf y<tV 11

Sor there exists ^ g N such for ail k e KQ = {fc € K5 |: fc > fes } we have

Define, for fe G

Then, by (59)

\Pk ~ M =

- _

f(xk +sk(Kk)) - f{xk) - ipk(sk(Âk))

tpk(sk(Ak))

o(pk(Ak)f)
||âfc(Afc)
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Thus,
lim pfc = l. (60)
ctfl\

As (60) contradicts (47), x* is second-order stationary in this case.

Assume now that (44) holds. Since lim Xk — x* and ƒ(#&) is

monotonically decreasing, we have that

fc - ƒ ( * * ) ) = (). (61)

But, by (32),

f(xk+i) < f(xk) + m/>fc(sfc(Afc)). (62)

So, from (61), and (62), it follows that

lim ^fc(âfc(Afc)) = 0. (63)

Define A = inf A& > 0 and let s* be a global solution of

Minimize - s V2ƒ(x+)s + g(x*)Ts

subject to /i(x* + s) = 0 (64)

INI < A/2
Let &6 ^ Ki be such that

lkfc-x*|r<A/2 (65)

for ail A; G K7 = {A; G Ki | fc > Ar6}.

Define, for k G K7

% = ^* + 5* - Xk- (66)

By (64) and (65) we have that

Pfcll < A < Afc (67)

for ail k G K7. Moreover,

Ĵfc + % = #* + 5* G 5 . (68)
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By (67), (68) and (31) we have that

MM&k)) < M*k) (69)

for all k G K7. So, by (63), (66) and (69),

-sfV2ƒ(**>* +g(x*fs* = lim àslv2f(xk)sk + g(xkfsk]

Therefore, 0 is a minimizer of (64). This implies that x* is second-order
stationary of (6) and the proof is complete. •

THEOREM 3.11: Assume the hypotheses ofTheorem 3.10. Suppose that x* is
a limit point of{xk} that satisfies the General Local As sumptions of Section 2.
Then, the whole séquence {xk} converges to x* and there exists c > 0 such
that (22) holds.

Proof: Since x* satisfies the sufficient conditions for a strict local
minimizer, there exists e\ > 0 such that x* is the only limit point of
{xk} in the set {x G S | \\x - x*|| < ei}. Let €2 G (0,ei). By (19), there
exists £3 G (0,£2) such that

\mx,V2f(x))-x\\<e1-e2 (70)

whenever \\x — x*\\ < £3. Define m — min{/(x) | x G <S, £3 < \\x — x+ | | <
si} and U = {x G S | ||a; - x*|| < ei and f{x) < m}. Clearly, U is an
open set, x* G U9 and \\x - ar*|| < £3 for ail x e U. Since :r* is a limit
point of {xk}> there exists ko G N such that xko G W. Now, by (70) and
the définition of Algorithm 3.1,

Therefore, ||xfco+1 - ar*|| < \\xko - x*\\ + ||xfco+i - ^ J | <" ei. By the
définition of the algorithm, f{xkù+i) < m, so #&0+i G W. By an inductive
argument we can prove that xk G U for ail k > ko. So, the séquence
converges to #*. Now, by (19),

lim 2

k—>oo

So, there exists k\ G N such that ||$(xfc, V
2f(xk)) - xk\\ < Amin for ail

k > k\. Therefore, for k > fci, the first trial point Ifc(A) at Step 3 of
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Algorithm 3.1 is ||$(#fc, V2 f(xk)) - £fc||. But, by Theorem 2.6, there exists
&2 > ki such that this trial incrément satisfies (32) for ail k > k%. This
means that Algorithm 3.1 coincides with the Local Algorithm for ail k > k<i.
So, the desired resuit follows from Theorem 2.5. D

4. NUMERICAL EXPERIMENTS

We used the Algorithm 3.1, with B^ = V2 f{x^) for solving problems
of the type (6), where

h(x) = \\Ax\\2-d\ (71)

A is a nonsingular matrix and jj • || is the Euclidian norm.

The test problems were generated as follows (cf. [24]). We considered
the intégral équation

with the boundary conditions x(0) = x(l) = 0. Given y9 the problem of
finding x(i) that satisfies approximately (72) is ill-posed, so for solving it we
need regularization (see [23]). The regularization approach used by Vogel
for solving (72) is to replace this équation by

Minimize Uli^x) — y\\\2

subject to |x|2 < /32

where \\\y\\\2 = JQ \y(t)\2dt, |x|2 = f^xfffidt, with indicating the
derivative with respect to t. We are interested in solutions of (73) that
belong to the boundary, so that problem (73) is equivalent to

Minimize ||]F(x) - yj||2

subject to |x

The resolution of (73) using trust-region methods was considered in [16].
Since the solution of (73) is on the boundary for all the relevant cases,
the restriction to (74) is natural. After discretization, (74) becomes a finite
dimensional problem of type (6), where h is given by (71), with

/ - l 1 0 \

0 - 1 •'•.

2 ,2 ( 7 4 )

A = (n + 1)

\0 0 - l )

and e2 = /32(n
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Moreover, using the change of variables x = Ax, it can be transformed
onto a problem of type

Minimize f(x)

subject to \\x\\2 = 62.

We use Algorithm 3.1 for solving (75). In the implementation of this
algorithm we need to solve problem (31), for the special case where the
feasible région is the intersection of a (trust-région) bail and a sphère.
Observe that the quadratic objective function is not necessarily convex,
as in the approach of Vogel. The global solution of (31) can be a local
minimizer of ipk(s) on the sphère, or a global minimizer of ipk{$) o n the
intersection of the sphère with the boundary of the bail. This intersection is a
sphère of lower dimension, so the global minimizer on it can be found using a
classical characterization ([9, 22, 19, 17]). A global minimizer on the original
sphère can also be found using the same techniques, and the local-nonglobal
minimizer can be found, if it exists, using the algorithm given by Martïnez
{cf [151). Therefore, we are able to solve the subproblem in a completely
satisfactory way, for a gênerai nonconvex quadratic objective function.

We choose x*(r), a solution to (72), given by

X*(T) = ci exp(di(r — pi)2) + C2 exp(d2(T — P2)2) + C3T + £4

where a = - 0 . 1 , c2 = -0.075, di = -40, d2 = -60, Pl = 0.4, p2 ~
0.67 and c%, C4 are chosen so that x*(0) = x*(l) = 0. Consequently, we
define y* = F(x*). The data yi used in the discretization of (74) are

where t{; = i/(m + 1), i = 1,...., m. In the experiments we used m = 30.
The "errors" e% were generated randomly with normal distribution with
mean 0 and standard déviation 0.002 ||F(x*)|j. The solution x* satisfies
|x*|2 = (0.277)2.

Ail computations were carried out on a Sun Sparc-Station 2, using
Fortran 77. We solved ten séquences of finite dimensional problems
(75) with increasing /3 e {0.2,0.25,0.275,0.3,. 0.325, 0.4,0.5} generated
with ten different seeds for perturbing the data yi. The initial feasible

point was xo = ( 1 , 1 . . . . , 1)T e R25 and the maximum number
of itérations performed was 30, never reached in the tests. The average
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results are presented in Table 1 where IT and FE dénote, respectively, the
number of itérations and the number of function évaluations performed by
Algorithm 3.1. We also present comparative results using the Gauss-Newton
approximation for the Hessian, which corresponds to Vogel's choice. We
should point out that the results in [24] are presented just by means
of graphs, so we cannot make a direct quantitative comparison with his
approach. However, by plotting the curves corresponding to the approximate
solutions obtained by our algorithm with true Hessians we observe that our
results are visually similar to the ones obtained by Vogel. We also emphasize
that Table 1 is different from Table 7 in [16] because hère ail itérâtes are
feasible with respect to the regularizing sphère, which does not necessarily
happens in [16].

TABLE 1
Average comparative resulîs

True

Hessians

Gauss-

Newton

P

IT

FE

IT

FE

0.200

5.7

6.8

16

17

0.250

8.0

9.0

17.1

18.1

0.275

8.6

10.1

17.6

18.6

0300

9.3

10.9

18

19

0.325

10.3

11.4

18.1

19.1

0.400

11.3

15.2

18.5

19.5

0.500

17.4

23.0

19.5

20.5

5. CONCLUSIONS

In this paper we have introduced a trust-region method for equality
constrained problems, where the constraints are not approximated by linear
functions. The main application of our techniques is the solution of
constrained least-squares regularization of nonlinear ill-posed problems using
the trust-region approach. Our approach for this problem differs from Vogel's
one [24] in that we admit nonconvex quadratic functions in the subproblem.

This work is in continuation of a previous paper where we analyzed
the trust-region algorithm with arbitrary constraints, and we proved first-
order convergence results. For equality constrained problems, we proved in
this paper second-order global convergence results, and local convergence
results, using the theory of Fixed-Point Quasi-Newton methods. The scope
of problems to which the new approach is presently applicable is limited
because of the difficulty of the subproblems. However, we expect that in
the next few years more complicated subproblems will be solved with ad
hoc efficient methods, so that the gênerai approach presented hère should be
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widely applicable. In particular, regularization techniques can be incorporated
to take into account limitations of several derivatives of the solution of an
ill-posed problem. For that type of problems, the development of quadratic
minimizers with gênerai quadratic constraints becomes particularly relevant
in order to efficiently solve trust-région subproblems.

Future research includes the application of the techniques introduced in
[16] and improved in this paper to prove theoretical properties of nonlinear
programming algorithms that follow closely the feasible région, as it is the
case of classical GRG techniques ([1, 11]).
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