A trust region method for zero-one nonlinear programming
RAIRO - Operations Research - Recherche Opérationnelle, Tome 31 (1997) no. 4, pp. 331-341.
@article{RO_1997__31_4_331_0,
     author = {Mauricio, D. and Maculan, N.},
     title = {A trust region method for zero-one nonlinear programming},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {331--341},
     publisher = {EDP-Sciences},
     volume = {31},
     number = {4},
     year = {1997},
     zbl = {0888.90122},
     mrnumber = {1491042},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1997__31_4_331_0/}
}
TY  - JOUR
AU  - Mauricio, D.
AU  - Maculan, N.
TI  - A trust region method for zero-one nonlinear programming
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1997
DA  - 1997///
SP  - 331
EP  - 341
VL  - 31
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1997__31_4_331_0/
UR  - https://zbmath.org/?q=an%3A0888.90122
UR  - https://www.ams.org/mathscinet-getitem?mr=1491042
LA  - en
ID  - RO_1997__31_4_331_0
ER  - 
Mauricio, D.; Maculan, N. A trust region method for zero-one nonlinear programming. RAIRO - Operations Research - Recherche Opérationnelle, Tome 31 (1997) no. 4, pp. 331-341. http://archive.numdam.org/item/RO_1997__31_4_331_0/

1. A. V. Aho, J. E. Hopocroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison Wesley Publication Company, 1974. | Zbl 0326.68005

2. J. Cha, Mixed Discrete Constrained Nonlinear Programming via Recursive Quadratic Programming. University of New York at Buffalo, 1987.

3. R. S. Garfinkel and G. L. Nenhauser, Integer Programming, John Willey & Sons, Inc., NY, 1972. | MR 381688 | Zbl 0259.90022

4. O. K. Gupta and A. Ravindran, Nonlinear Integer Programming and Discrete Optimization, ASME Journal of Mechanism, Transmission and Automation in Design, 1981, 105, pp. 160-164.

5. P. Hansen, Methods of Nonlinear 0-1 Programming and Discrete Mathematical Programming. Mathematical Programming, 1979, 5, pp. 53-70. | MR 558567 | Zbl 0426.90063

6. H. Loh and N. Papalambros, A sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems. Design Laboratory, University of Michigan, Technical Report UM-MEAM-89-08, 1989.

7. D. Mauricio and S. Scheimberg, Um Método de Linearização Sequencial comCortes Eficientes para Programação Inteira com Restrições Lineares. COPPE/Federal University of Rio de Janeiro, ES-283.93, Relatório Técnico, 1993.

8. D. Mauricio, Métodos de Resolução de Problemas de Programação Não Linear Inteira. Ph. D. dissertation, Systems Engineering and Computer Science, COPPE/Federal University of Rio de Janeiro, 1994.

9. Z. A. Wu, A Subgradient Algorithm for Nonlinear Integer Programming and its Implementation. Ph. D. dissertation, Rice University, Houston, Texas, 1991.

10. N. Ziviani, Projeto de Algoritmos - Com Implementações em Pascal e C. Pioneira, São Paulo, SP, Brazil, 1993.