Three easy special cases of the euclidean travelling salesman problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 31 (1997) no. 4, pp. 343-362.
@article{RO_1997__31_4_343_0,
     author = {De\u{i}neko, V. G. and Van der Veen, J. A. and Rudolf, R. and Woeginger, G. J.},
     title = {Three easy special cases of the euclidean travelling salesman problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {343--362},
     publisher = {EDP-Sciences},
     volume = {31},
     number = {4},
     year = {1997},
     zbl = {0888.90141},
     mrnumber = {1491043},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1997__31_4_343_0/}
}
TY  - JOUR
AU  - Deĭneko, V. G.
AU  - Van der Veen, J. A.
AU  - Rudolf, R.
AU  - Woeginger, G. J.
TI  - Three easy special cases of the euclidean travelling salesman problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1997
DA  - 1997///
SP  - 343
EP  - 362
VL  - 31
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1997__31_4_343_0/
UR  - https://zbmath.org/?q=an%3A0888.90141
UR  - https://www.ams.org/mathscinet-getitem?mr=1491043
LA  - en
ID  - RO_1997__31_4_343_0
ER  - 
Deĭneko, V. G.; Van der Veen, J. A.; Rudolf, R.; Woeginger, G. J. Three easy special cases of the euclidean travelling salesman problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 31 (1997) no. 4, pp. 343-362. http://archive.numdam.org/item/RO_1997__31_4_343_0/

1. K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, 1976, 13, pp.335-379. | MR 433962 | Zbl 0367.68034

2. V. G. Deĭneko, R. Rudolf and G. J. Woeginger, On the Recognition of Permuted Supnick and Incomplete Monge Matrices, SFB Report 05, Spezialforschungsbereich, "Optimierung und Kontrolle", TU Graz, Austria. | Zbl 0858.68042

V. M. Demidenko, A special case of travelling salesman problems, Izv.Akad. Nauk. BSSR, Ser.fiz.-mat nauk, 1976, 5, pp. 28-32 (in Russian). | MR 456442 | Zbl 0366.90090

4. M. M. Flood, The traveling salesman problem, Operations Research, 1956, 4, pp. 61-75. | MR 78639

5. P. C. Gilmore, E. L. Lawler and D. B. Shmoys, Well-solved special cases, Chapter 4 in [8], pp. 87-143. | MR 811471 | Zbl 0631.90081

6. C. H. Papadimitriou, The Euclidean travelling salesman problem is NP-complete, Theoretical Computer Science, 1977, 4, pp.237-244. | MR 455550 | Zbl 0386.90057

7. K. Kalmanson, Edgeconvex circuits and the travelling salesman problem, Canadian Journal of Mathematics, 1975, 27, pp. 1000-1010. | MR 396329 | Zbl 0284.05117

8. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, The travelling salesman problem, Wiley, Chichester, 1985. | MR 811467 | Zbl 0562.00014

9. L. Lovász, Combinatorial Problems and Exercices, North-Holland, Amsterdam, 1978. | Zbl 0785.05001

10. F. P. Preparata and M. I. Shamos, Computational Geometry - an Introduction, Springer Verlag, New York, 1985. | MR 805539 | Zbl 0759.68037

11. L. V. Quintas and F. Supnick, On some properties of shortest Hamiltonian circuits, American Mathematical Monthly, 1965, 72, pp. 977-980. | MR 188872 | Zbl 0134.40603

12. F. Supnick, Extreme Hamiltonian lines, Annals of Math., 1957, 66, pp. 179-201. | MR 88401 | Zbl 0078.16502

13. J. A. Van Der Veen, A new class of pyramidally solvable symmetric traveling salesmas problems, SIAM J. Disc. Math., 1994, 7, pp. 585-592. | MR 1299086 | Zbl 0813.90124