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DUALITY FOR INCREASING POSITI
HOMOGENEOUS FUNCTIONS

AND NORMAL SETS (*) (1)

by A. M. RUBINOV and B. M. GLOVER (2)

Communicated by Jean-Pierre CROUZEDC

Abstract. - A nonlinear duality opération is defined for the class of increasing positively
homogeneous functions defined on the positive orthant (including zero). This class of function
and the associated class of normal sets are used extensively in Mathematical Economies. Various
examples are provided along with a discussion of duality for a class of optimization problems
involving increasing functions and normal sets. © Elsevier, Paris

Keywords: Increasing functions, positively homogeneous functions, duality, conjugacy operators,
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Résumé. - Nous définissons une opération de dualité non linéaire pour la classe des fonctions
croissantes homogènes positives définies sur V'orthant positif (zéro inclus). Cette classe de fonctions,
tout comme la classe associée d'ensembles normaux, est très souvent utilisée en Économie
Mathématique. Nous donnons plusieurs exemples avec une discussion de la dualité pour une
classe de problèmes d'optimisation impliquant des fonctions croissantes et des ensembles normaux.
© Elsevier, Paris

Mots clés : Fonctions croissantes, fonctions homogènes positives, dualité, opérateurs conjugués,
ensembles normaux, économie mathématique.

1. INTRODUCTION

In this paper we investigate normal subsets of the cone

R%+ = {x e Rn : {Vi)xl > 0} U {0}

and increasing functions defined on this cone. In particular we shall discuss
the class of increasing and positively homogeneous functions. These classes
of sets and functions often arise in the study of various problems in
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1 0 6 A. M. RUBINOV AND B. M. GLOVER

Mathematical Economies [6, 8]. A subset fi of the cône R™ + is said to
be normal if

(x en,xf e R++ , x' < x) => x e fi. (1)

Note that the ordering hère is the usual coordinatewise order relation in R'\
The property (1) is usually termed free disposai in economie theory [6, 8].
This property is often applied to subsets of the cône R™ of all n-vectors
with nonnegative coordinates. It will be more convenient in this paper to
consider R++ , however it is clear that all the results presented hère can be
easily transfered to the more gênerai setting with natural modifications.

In the study of various models of economie equilibrium and dynamics it
is usual to consider convex normal sets (see [6, 8, 11]). However there are
significant problems which arise in économies for which nonconvex normal
sets are required. For example in the study of the asymptotic behaviour of
paths for Von Neumann type models of economie dynamics it is necessary
to consider specially structured nonconvex normal sets [11].

Increasing positively homogeneous of degree one (IPH) functions also
play an important rôle in the study of models in Mathematical Economies.
For example they are used as production functions under the assumption of
constant returns to scale.

There are two approaches to the relationship between normal sets and the
class of IPH functions. Firstly it is often convenient to study normal sets and
IPH functions within a very gênerai framework of generalized (or abstract)
convexity and Minkowski duality (see [5, 12, 1, 2]). The second approach
involves the study of IPH functions as the Minkowski gauge of appropriate
normal sets. In this paper we will unité both approaches in a very simple
and elegant way in order to study a special kind of nonlinear duality for IPH
functions and normal sets. The results obtained will be applied to the study
of lower semicontinuous increasing functions defined on the cône R++. It
should be noted the level sets {x E R++ : ƒ (x) < c} of such functions are
closed and normal (where ƒ is l.s.c. and increasing on R" + and c G R).

There is a clear analogy between the class of IPH functions and the class
of sublinear functions and between normal sets and convex sets. One of the
main tools for the study of sublinearity of functions and the convexity of sets
are linear functions. For example a function p defined on a locally convex
Hausdorff topological vector space is l.s.c and sublinear if and only if there is
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INCREASING POSITIVELY HOMOGENEOUS FUNCTIONS AND NORMAL SETS 107

a set of continuous linear functions U such that p (x) — sup {v (x) : v G U}.
In this paper we wil be interested in the class of functions of the form

h (x) = min {hi x% : i = 1, 2, ..., n} (2)

to replace the linear functions x i—> ̂ /i hiXi. Here h G R++- The class
of linear functions leads to the development of sublinear functions and
convex sets whereas (as we shall show) functions of the form (2) lead to the
development of IPH functions and normal sets. We should note that in this
structure increasing functions will play the role of quasiconvex functions in
the sense that a fonction is quasiconvex if and only if it has convex level
sets and a function is increasing if and only if it has normal level sets.

Functions of the form (2) were first used in the study of normal subsets
of the cone R+ and IPH functions on this cone in [1, 2], For the case of
functions deflned on R++ see the paper [12]. We shall require some of the
results from this paper here and these results are discussed in the next section.

We consider R!j_+ as a topological space. Thus when we discuss closed
subsets of this cone or the closure of subsets we mean closure in the
topological space R++.

2. PRELIMINARIES

Let us consider the cone

R%+ = {x = (xu S2,"., xn) G Rn : (\/t)xl > 0} U {0}

and the set H of all functions h defined on R™ + by the formula:

h(x) = (h,x) (3)

where the coupling functional ( •, • ) is deflned as follows:

(h, x) = min {hi Xi : i — 1,..., n},

with h = (/ii,..., hn) G R++ . We will identify the vector h G U\+ and the
function h e H which is generated by this vector using (3). We can introducé
two natural order relations on the set H. First: h\ > h2 if h\ (x) > h*i (x)
for all x G R!^+ (the functional order relation) and secondly: h\ > foi
where hx = (h\y hl,..., hi), h2 = (h\, / i | , . - , h\) if h\ > h\ for all
i — 1,..., n (vectorial order relation). It is straightforward to check that these
two relations coincide so we can identify H and R++ as ordered sets.

vol. 32, n° 2, 1998



1 0 8 A. M. RUBINOV AND B. M. GLOVER

We are now interested in functions ƒ : R"+ —• R+oo = R U {+00} of
the form:

ƒ (x) = sup {h, x) (4)
heu

where U is a subset of H = R++- Since h (x) = (/i, x) is an IPH function
it follows that a function ƒ of the form (4) is also IPH and ƒ ^ +00 (for
example ƒ (0) = 0). Let us dénote the set of ail IPH functions with the same
notation, IPH. Thus we have the following définition:

DÉFINITION 2.1: A function ƒ : R++ —> R+œ is an IPH functions if the
following are satisfied:

1. x > y implies f (x) > f (y).
2. f(Xx) = Xf(x) for À > 0.
3. ƒ is not identically +00.
From the properties of IPH functions it immediately follows that ƒ (0) = 0

for ail IPH functions.
Essentially the following proposition can be found in [12].

PROPOSITION 2.2 [12]: ƒ G IPH if and only if there is a nonempty subset
U of the cône R^+ such that ƒ has the form (4).

Remark: In [12, Proposition 3.1] it was noted that a function p defined on
the cône R^ can be expressed in the form (4) if and only if p is IPH and
vanishes on the boundary of R!ji. The same proof is suitable for the more
spécifie case used in this paper.

DÉFINITION 2.3: The subset U of the cône R^_+ = H is called a support
set if there is a function ƒ : R++ —> R+Oo such that

U = {h : (Va; G R^+) / i(x) < f(x)}.

PROPOSITION 2.4 [12]: The subset U ofthe cône R++ is a support set if and
only if this set is closed (in R++) and normal.

3. NORMAL SETS AND LEVEL SETS OF IPH FUNCTIONS

In this section we shall show that the level sets of an IPH function are
normal and that the function can be expressed as the Minkowski gauge of
its level set.
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INCREASING POSITIVELY HOMOGENEOUS FUNCTIONS AND NORMAL SETS 109

First we describe some properties of IPH functions. Let ƒ be an IPH
function, then:

1. ƒ (ar) > 0 for all x G R++. This is clear since ƒ is increasing and
/(O) = 0.

2. If ƒ G IPH and there exists a point x G R++ such that ƒ (x) = +00
then ƒ (x) = +00 for ail x G R++ \{0}. Indeed if x G R++ then there is a
A > 0 such that x > Xx therefore ƒ (x) > ƒ (Xx) = A ƒ (x) = +00.

3. If there exists a point x G R++\{0} such that ƒ (x) = 0 then ƒ (x) = 0
for ail x G R++. In fact for each x G R++ there is a A > 0 such that
x < Xx. Hence 0 < ƒ (x) < X ƒ (x) - 0.

Thus for an /Pif function ƒ : R+_j_ —̂  R+oo there are three possibilities:
(i) ƒ maps R^+\{0} into (0, +00),

(ii) ƒ (x) = +00 for ail x G R++\{°}>
(iii) f(x) = 0 for ail x G R^+-

4. If ƒ G IPH then ƒ is continuous on the set R^ + \{0} .
To see this assume that ƒ maps R!^+\{0} into (0, +00). Let x G R++ ,

x ^ 0 and xn —> x. Take e > 0. For sufficiently large n we have

(1 - e)x < xn < (l + e)x.

Hence

Thus /(x„) ^ f(x).
5. ƒ is Ls.c. at the point x = 0.
We now recall the définition of a normal set.

DÉFINITION 3.1: The subset £1 of the cône R!j_+ is called normal if

(x en, x G R^+, x' < x) => x' e Si.

The following property of IPH functions will be essential in the sequel.

PROPOSITION 3.2: For an IPH function ƒ the level set S\ ( ƒ ) = {x G R++ :
ƒ (x) < 1} w normal and closed (in the topological space R++ j .

Proof: Since ƒ is increasing it follows that Si (ƒ) is normal. The closure
follows since ƒ is Ls.c.

vol 32, n° 2, 1998



1 1 0 A. M. RUBINOV AND B. M. GLOVER

Note that for a nonnegative positively homogenous of degree one function
ƒ we have, for all c > 0:

Hère, by définition, we have 0 • fi — HA>O Aïl. So if / i , ƒ2 G IPH then
h = h if and only if S1 {h) = Si (/2).

Let C/ be a closed normal subset of the space R++- Clearly U is star-
shaped with respect to zero, Le. if x G U then Xx G C/ for ail À G [0, 1].
Let /zj7 be the Minkowski gauge of the set C/. Thus

m (x) = inf {A > 0 : x G A £/} (x G R++)

PROPOSITION 3.3: Let U be a closed normal subset of the space R!f._f_. Then
HU G IPH and U = Si O*y).

Proof: Clearly / ^ is positively homogeneous. Since U is star-shaped and
closed it follows easily that U = S\ {jiu)- So we only have to verify that nu
is increasing. Let x < y and JJLJJ (y) = c. Then y G Xfl for ail X > c. Hence

fj,jj (x) = inf {A > 0 : x G AJ7} < c — fiu (y).

Thus the resuit is established. D

COROLLARY 3.4: 77ze mapping U \—> /J,JJ is a one-to-one correspondence
between the collection of ail closed normal sets and the set of all IPH
functions.

DÉFINITION 3.5: Let Q be a subset of R^+ . The set N (ft) = {x G R++ :
(3xf G fi)x < a:7} is called the normal huil of the set fi.

It is easy to check that the closure (in R!̂ _|_) of the normal hull N (îî)
is also a normal set.

PROPOSITION 3.6: IfQ! is a closed normal subset of R!j:+ arcd fiy 5 fi *Ae«
fi' D cl AT (fi).

Proof: It follows immediately from the définition. D

4. CONJUGATE SETS AND FUNCTIONS

We now introducé the following conjugacy notion both for normal sets
and IPH functions.

Recherche opérationnelle/Opérations Research
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DÉFINITION 4.1: Let fi be a subset of R++ . The set

Q* = {he R%+ : (Va? E fi) {h, x) < 1}

is called the conjugate set with respect to fi.

Clearly we can consider the set fi* as analogous to the polar set in convex
analysis.

We note the foUowing properties of conjugate sets which follow directly
from the définition.

1. fi* is closed and normal.

2. fi* = (cliV(fi))*.

3. {0}* = R» + ; (R«+)* = {0}.
4. Let / be an arbitrary index set and fi? Ç 1R +̂ for each % e I. Then

(U?;Gjfi0* = nie/f2f.

We now define the conjugate function to an IPH function.

DÉFINITION 4.2: Let p be an IPH function defined on R4.+. Then the
function p* defined on R™ + as follows

p* (h) = sup ^ 4 (5)

is called the conjugate function of p.

Clearly p* is analogous to the polar function of a nonnegative sublinear
function [10] (in particular it is analogous to the conjugate norm).

Let p be an IPH function and let fi = S\ (p) = {x : p (x) < 1}. Then

p* (h) = sup (ft, x).

Proposition 2.2 shows that p* is an IPH function. Since p is IPH it follows
that fi = Si (p) is a closed normal set. Also Proposition 3.2 shows that fi
is a support set. Now let us describe the level set Si (p*) of the conjugate
function p*. We have:

= {he R++ : (Vn G fi) (h, x) < 1} = fi*.

Thus the foUowing assertion is valid.

vol. 32, n° 2, 1998
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PROPOSITION 4.3: For an IPHfunction p the level set Si (p*) ofthe conjugate
function p* is the conjugate set ofthe level set Si (p) ofthe given function p,

It is possible to give an explicit description of the conjugate function in this
case. We will use the following notation, for h — (hi,..., hn) G [R++\{0}

dénote by \ the vector (7^,. . . , jpV

THEOREM 4.4: For an IPH function p we have, for h ^ 0:

Proof: Let h G R++, h ^ 0. We introducé the vectors:

x = —, h = p(af) /i.
Ai

Let x E R++- Put ç(x) = minz I
1. Further dénote by zo the index such

that q(x) = Xio/xio. Let us consider the vector u — (wi,..., wn) with
U{ — Xi — q(x)xi, i = 1,..., ri. We have

x = q (x) x + w, w > 0, w?0 = 0.

Since p is increasing it follows that

p{x) >p(q(x)x) = q{x)p{x).

Also, by applying the relations U{ > Ui0 = 0 and ̂  — l/Zi? (for ail z),
we have

(7ï, x) = min [p (x) hi] • [ç (x) xt- + Ui]

= ^ (x) min (q (x) + UÏ • /ii)

= p(x)g(x) .

Therefore

It follows from the définition of h and â; that {h, x) — p (x).

Recall that h = p (1/h) h. So we have, for ail a; E R!J:+,

Recherche opérationnelle/Opérations Research
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moreover

1
(h, x) = p _

Therefore

P* (ft) — SUp ^—r- = —TJY (6)
Tzl0 p (x) T) { f- )

Thus the result follows. D

Remark: Define for h — 0, p(l/h) — p(+oo) — +CXD. Since p* (/i) — 0
it follows that the formula (6) holds for h = 0 also.

The following corollaries follow immediately from Theorem 4.4.

COROLLARY 4.5: Let ft be a closed normal subset of Rïj_+ and let p be an
IPH function such that ft = Si {p). Then

ft* = {h : p* (h) < 1} - {/i : p {l/h) > 1}.

COROLLARY 4.6: For an IPH function p we have p** — p and for a closed
normal set ft we have ft** = ft.

COROLLARY 4.7: /ƒ ft Ç R^+ then ft** = cliV(ft).
Let us consider some examples.

Exemples 4.8: Consider the following examples of IPH functions and their
conjugates.

1. Let x G R!j:+ and define the following family of IPH functions for
0 < k < +oo:

Clearly for k > 1 the function pj- is the l^ norm on Rn and is consequently
a continuous sublinear function. For 0 < k < 1 the function pt is known as
a CES function in economie theory (see, for example, [4]). However in this
case it is a superlinear function (and hence nonconvex) IPH function. It is
straight forward to show that for h G R++\{0} we have

* , , , 1 1
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1 1 4 A. M. RUBINOV AND B. M. GLOVER

Consider, in particular, the l\ norm p\ in which case the conjugate
function is

Note that if we consider, from simple DC circuit theory, the problem
of calculating the total résistance from a set of resistors placed in series or
parallel then the function p\ dénotes the total résistance when they are placed
in series and p\ dénotes the total résistance when they are placed in parallel.

2. Consider the IPH function defined as follows:

p(x) = Cxaixa2...xan, Yl a* = *> a« ^°-
i

In this case the conjugate function is defined as follows:

Thus if C = 1 we find p — p*. Note that functions such as p are concave
IPH functions and they arise as the so-called Cobb-Douglas production
functions in économies (see, for example, [4]).

3. Consider, following the first example above, the £+oo norm on Rn

restricted to the cone R" + :

P+oo (x) = max Xi.
i

Then the conjugate function is given as follows:

p* (h) = =- — — i — = minhi.
max è- • ,

Ui in m tïi

We will now apply Theorem 4.4 to establish the following assertion.

PROPOSITION 4.9: If p is an IPH convex function then p* is concave.

Proof: 1) Let / = (Zi,..., ln) G R+\{0}. Clearly the function

ï{x) = f^Uxi
t= i

Recherche opérationnelle/Opérations Research



ÏNCREASING POSITIVELY HOMOGENEOUS FUNCTIONS AND NORMAL SETS 115

is an IPH function. We have, for h G R++>

-
 1 -f ±+\h

*(*) l oo

Let us check that ï* (h) is a concave function. For

x = (xi, £2,..., xn) G R+

set

M . , - { ^ X = (#
x = 0

We first verify that iïj is concave on R^+ \{0}. We shall use induction on
n. Calculating the Hessian of H2 it is easy to check that this function is
concave on R^_+\{0}. Clearly H2 is also increasing. So the equality

, Xn+i) =

shows that concavity of Hn implies concavity of i ï n +i . Thus Hn is concave
on R^+\{0} for all n. It is easy to check that this function is concave on

We have for h G

ï*(h) = HK(Ah)

where Ah — (hi/k)l€x, I = {i : k > 0}, « = |/ | . Since i is a linear
operator it follows that P is a concave function as required.

2) Now let p G IPH, p / 0 and assume that p is convex. Thus p is
sublinear and increasing. It is well known that for an increasing sublinear
function ƒ the following représentation is valid:

p{x) — sup l (x),

vol. 32, n° 2, 1998



116 A. M. RUBBSTOV AND B. M. GLOVER

where Ü = dp (0) n R£ and dp (0) = {l e Un : (Vx G R$.) ï(x) < p (x)} is
the usual subdifferential of the fonction p at the point x = 0. We have

P*
1

sup l ( I )

~ inf ... Niea l ( i )

= inf r (h)

Since /* is concave it follows that p* is also concave. D

Remark: Example 4.8 (2) above shows that the converse to Proposition
4.9 is not valid. It is possible that both p and p* are concave functions.

We will now give a economie interprétation to the duality under
considération in a simple case.

Assume there is a price vector l = (Ji,..., ln) in a n economical System.
We will call this vector the vector of basic priées. Assume that k > 0 for
all L For an arbitrary price vector h = (/ij,..., /i„) we can define lower and
upper estimâtes of the déviation of the vector h from the basic vector l in
the following way. Begin by defining:

pi — max{A : À/ < h}} p2 (h) = min{A : À/ > h}.

Clearly

Pi (h) = min —, p2

We have, for x E

= max —.
i Li

Pi 7TY P2 {%) = = min

We can consider the quantity U x% as the cost of xi units of product i under
the basic price l{. So p\ (x) is an upper estimate and p\ (x) is a lower
estimate of the cost of purchasing the production vector x using the basic

Recherche opérationnelle/Opérations Research
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price vector L We can apply the usual sublinear duality (called polarity
in [10]) to the function p2. Let p^ ^e m e P°lar function to p2'.

p9 (x) — max V^ hi X{.

It is easy to check that, by applying the usual (£iy £00) duality, that
P2 (x) — l>2i h%i- Since p\ is a superlinear function we must apply a
different duality (polarity) opération in order to obtain a polar pf for p\ (in
the sense of convex analysis), namely:

P?(x) = min Yl hiXï'
Pi W>1 i

Clearly p^ (x) = ^i lixi- Thus> f o r a11 x e R++>

P1(X)<P?(X)=PUX)<PUX)

where p\ and p\ are the best estimâtes of pf — p\.
The dual opération * permits us to apply the same conjugation scheme to

both convex and concave IPH functions. For example it is not possible to
apply duality in the sense of convex analysis to functions of the following
form: 7 ,

,jx . hi hi
qi (fi) — a mm -—Y p max —.

i ii % li
with a > 0, (3 > 0. However we can easily compute the conjugate function qf :

Ï ()
a min j

a
max li Xi

(max
i

1

• +

+ f3 max
i

min li Xi

i) (min li x
i

1
i Xi

a min 1{X{ + j3 max ^ x%
i i

— -7-T (max li xi) (min Uxi).
Ql/l Kx) % %

5. INCREASING FUNCTIONS AND NORMAL LEVEL SETS

Recall that a function ƒ defined on a linear space X is called quasiconvex
if its level sets {x : ƒ (x) < c} are convex for all c. We will now consider the
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1 1 8 A. M. RUBINOV AND B. M. GLOVER

analogue of this construction for fonctions defined on R++ which possess
level sets which are normal (for ail c). It is straightforward to check that a
function possesses this property if and only if the function is increasing.

DÉFINITION 5.1: Let Jo dénote the set of lower semicontinuous increasing
functions defined on R™ + which vanish at the origin.

If ƒ G Jo then the level sets Sc(f) = {x : ƒ (x) < c} and
Tc (ƒ) — {x : ƒ (x) < c} are normal for ail c > 0. In addition the zero level
set SQ (ƒ) = {x : ƒ (x) < 0} = {0} is trivially normal. Note that by the
lower semicontinuity assumption Sc (ƒ) are closed for ail c > 0.

Recently there has been considérable attention in the literature on various
définitions of a conjugate to a quasiconvex function defined on a l.c.H.t.v.s
X (see, for example [3, 9, 13, 7, 14]). One such approach is particularly
suitable for nonnegative Ls.c. quasiconvex functions q with q(0) — 0 [13].
By this approach the conjugate is defined as follows:

where v is a continuous linear functional on X. It can be shown [13] that
the level sets of the conjugate function are the polar sets of the level sets of
the original function. More precisely, for c > 0,

cf>c

Now we give a similar définition of conjugate applicable to the situation
under study in this paper.

DÉFINITION 5.2: Let ƒ be a nonnegative function mapping R!f.+ into
with ƒ (0) = 0. The function ƒ* defined on R!j:+ as.follows:

1
f * ( h ) - J i n f ƒ ( s ) " ^ "

l O h = O
is called the conjugate of ƒ. We also define ƒ* = 0 if f (x) = +00 for
all x G R%+.

We note the following properties of the conjugate function.

1. Let fi, f2 be nonnegative real-valued functions defined on R^+ with
h > h then fl < f*.

Recherche opérationnelle/Opérations Research
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2. Let / be an arbitrary index set and, for all i £ / , fi : R++ —> R+oo be
a family of functions with fi (0) = 0; let ƒ (x) = inf^j fi (x) (x G R++).
Then, for all h e H9

iel
This easily follows since:

inf inf fi (x)

_ 1
inf inf fi (x)

1
= sup —iel inf h (x)

= sup f* (h).
iel

3. Let ƒ G /o a°d continuous at the point l/h, then

nh)-7WY
Since (h, x) = min^i^..^ h% x% we have (h, x) > 1 if and only if x% > l/h%

for all i. Applying the continuity and monotonicity of the function ƒ we have

4. If p is an IPH function then both of the définitions of conjugate functions
coincide. Indeed both définitions yield:

(i)
Here we apply the continuity of p at the point h ^ 0 (see property 4 for

IPH functions in section 3).
The following proposition expresses the main property of the conjugate

function.
PROPOSITION 5.3: Let f : R++ —> R+oo be a function with the property

f (0) = 0. Then for all c > 0 we have

C>c
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Proof: Take c > 0. If h G S1/c (ƒ*) then ƒ (x) > c for all x such that
(/i, x) > 1. Hence the inequality ƒ {x) < c implies (h, x) < 1. Thus

sup {/i, x) < 1.
( )

Hence /i e (Tc (ƒ))*. Also, if /i G (Tc (ƒ))* then the inequality (h, x) > 1
implies ƒ (x) > c. Therefore

(Ainf>i f(x)>c and heS1/c(f*).

Now let h e TXjc (ƒ*) then inf^^x)>\ f (x) > c and there is ë > c such
that ƒ (x) > c' for ail x with (/i, x) > 1. If x G 5C' (ƒ), that is ƒ (s) < c\
then (/i, x) < 1. Thus

he(Sc,(fyç \J(s
c'>c

Hence

T1/C(f*)ç \J(SC>
c'>c

Similar arguments show that the reverse inclusion also holds. D

COROLLARY 5.4: Le? ƒ : R ^ + -> R with ƒ (0) = 0 r/zen ƒ* G 70.

^^ Sc (ƒ*) ^re closed and normal for all c > 0.
Recall that Sb (ƒ) = {0}.

COROLLARY 5.5: If f £ Io then ƒ** = ƒ.

Protf/* Let c > 0. Since ƒ G /o it follows that the set Sc ( ƒ ) is closed
and normal so Sc (ƒ) = (5C (ƒ))**. Applying Proposition 5.3 and property
4 (section 4) for conjugate sets we have

cf>c

D (
c'>c

n 5
c'>c
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It is easy to check that nc<>c, S& (ƒ) = Sc (ƒ). Therefore Sc (ƒ**) = Sc (ƒ)
for all o 0. So ƒ = ƒ**. •

DÉFINITION 5.6: Let ƒ : R™+ —> R+oo and let

ƒ (s) = sup { ƒ ( * ) : ƒ € io , ƒ < ƒ } •

The function ƒ is called the l.s.c. increasing huil of ƒ. Clearly ƒ G /o and
ƒ is the greatest member of IQ majorized by ƒ.

PROPOSITION 5.7: For f : R'l+ -> IR+OO wifA ƒ (0) = 0 we have

ƒ = ƒ**•

Proo/' Let ƒ G Jo, ƒ < ƒ. We have ƒ*_> ƒ* and therefore ƒ = ƒ**< ƒ**.
Since ƒ** € 70 it follows that ƒ** = ƒ. D

6. DUAL OPTIMIZATION PROBLEMS

Often in optimization theory and practice we encounter problems with
convex constraints (ie. constraints of the form x G fî where Vt is a convex
set). In the study of some Différence Convex (DC) optimization problems
we require reverse convex constraints, that is constraints of the form x $. ft
for Q, a convex set (see [14, 15]).

Recently Thach [14] considered a problem in vol ving the minimization of
a quasiconvex function subject to a reverse convex constraint which was
a dual to a quasiconvex maximization problem under convex constraints.
Such a primai problem is an example of a global optimization problem. We
shall now consider analogous results for maximization of an IQ function
on a normal set.

Consider the maximization problem:

(P) ƒ (x) —> max subject to x G fî,

where ƒ G /o is a continuous function and Ct is a closed normal subset
of R++. The following problem of minimization under reverse normal
constraints:

(D) ƒ* (h) -^ min subject to h g Q*

is called a dual problem to (P).
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THEOREM 6.1: Let ƒ and Q be as above, then

1

Proof: Let p be the Minkowski gauge of Q. Then p is an IPH function
and fî = {x : p(x) < 1}. Since p is continuous we have

int Q = {x : p (x) < 1}.

Since ƒ is continuous we have

sup ƒ (x) = sup ƒ (x) — sup ƒ (#)

'r

It follows from Corollary 4.5 that Q* = {h : p{\) > 1}. Therefore
* ƒ* (h))~l as required.

Remark: This resuit may be useful in studying some nonconvex extremal
problems. Assume for example that ft is a convex set and that we have
a function ƒ G /o such that both ƒ and ƒ* are concave functions (in
particular functions from Example 4.8 (1) (with k < 1) and 4.8(2) possess
this property). It is easy to see by applying Proposition 4.9 that the set
{h : h £ ft*} is convex. Therefore the problem (P) is a convex programming
problem. At the same time (D) is not convex. Thus Theorem 6.1 allows the
study of the nonconvex problem (D) using the convex problem (P).
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