Duality for increasing positively homogeneous functions and normal sets
RAIRO - Operations Research - Recherche Opérationnelle, Volume 32 (1998) no. 2, pp. 105-123.
@article{RO_1998__32_2_105_0,
     author = {Rubinov, A. M. and Glover, B. M.},
     title = {Duality for increasing positively homogeneous functions and normal sets},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {105--123},
     publisher = {EDP-Sciences},
     volume = {32},
     number = {2},
     year = {1998},
     mrnumber = {1628985},
     language = {en},
     url = {http://archive.numdam.org/item/RO_1998__32_2_105_0/}
}
TY  - JOUR
AU  - Rubinov, A. M.
AU  - Glover, B. M.
TI  - Duality for increasing positively homogeneous functions and normal sets
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1998
SP  - 105
EP  - 123
VL  - 32
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1998__32_2_105_0/
LA  - en
ID  - RO_1998__32_2_105_0
ER  - 
%0 Journal Article
%A Rubinov, A. M.
%A Glover, B. M.
%T Duality for increasing positively homogeneous functions and normal sets
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1998
%P 105-123
%V 32
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1998__32_2_105_0/
%G en
%F RO_1998__32_2_105_0
Rubinov, A. M.; Glover, B. M. Duality for increasing positively homogeneous functions and normal sets. RAIRO - Operations Research - Recherche Opérationnelle, Volume 32 (1998) no. 2, pp. 105-123. http://archive.numdam.org/item/RO_1998__32_2_105_0/

1. T. M. Abasov, Normal sets and monotone functions and their applications, J. Comput Mathematics and Mathematical Physics, 1993, 3, (7), pp. 1004-1011 (in Russian). | MR | Zbl

2. T. M. Abasov and A. M. Rubinov, On a class of H-convex functions, Russian Acad. Sci. Dokl. Math., 1994, 48, pp. 95-97. | MR | Zbl

3. J.-P. Crouzeix, A duality framework in quasiconvex programming, in Generalized Concavity in Optimization and Economics, S. SCHAIBLE and W, T. ZIEMBA (eds.), Academic Press, New York, 1981, pp. 109-130. | Zbl

4. M. D. Intrilligator, Mathematical Optimization and Economic Theory, Prentice-Hall, Englewood Cliffs, N.J., 1971. | MR | Zbl

5. S. S. Kutateladze and A. M. Rubinov, Minkowski duality and its applications, Russian Mathematical Surveys, 1972, 27, (3), pp. 137-192. | MR | Zbl

6. V. L. Makarov, M. I. Levin and A. M. Rubinov, Mathematical Economic Theory/Pure and Mixed Types of Economic Mechanisms, Advanced Textbook in Economics, 33, Elsevier, Amsterdam, 1995. | MR | Zbl

7. J. E. Martinez-Legaz, Quasiconvex duality theory by generalized conjugation methods, Optimization, 1988, 19, pp. 603-652. | MR | Zbl

8. H. Nikaido, Economic Theory and Convex Structures, Academic Press, New York, 1969. | Zbl

9. J.-P. Penot and M. Volle, On quasiconvex duality, Mathematics of Opérations Research, 1990, 15, (4), pp. 597-625. | MR | Zbl

10. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton N. J., 1970. | MR | Zbl

11. A. M. Rubinov, Superlinear Multivalued Mappings and their Applications to Problems of Mathematical Economics, Leningrad, Nauka, 1980 (in Russian). | MR

12. A. M. Rubinov B. M. Glover and V. Jeyakumar, A general approach to dual characterizations of solvability of inequality systems with application, Journal of Convex Analysis, 1995, 2, (1/2), pp. 309-344. | MR | Zbl

13. A. M. Rubinov and B. Shimshek, Conjugate quasiconvex nonnegative functions, Optimization, 1995, 35, pp. 1-22. | MR | Zbl

14. R. T. Thach, Global optimality criterion and a duality with zero gap in non-convex optimization, SIAM J. Math. Anal., 1993, 24, pp. 1537-1556. | MR | Zbl

15. Hoang Tuy, D. C. optimization: theory, methods and algorithms, in Handbook of Global Optimization, eds., R. HORST and P. M. PARDALOS, Kluwer Academic, 1995, pp. 149-216. | MR | Zbl