@article{RO_1999__33_3_371_0, author = {Artalejo, J. R. and G\'omez-Corral, A.}, title = {Computation of the limiting distribution in queueing systems with repeated attempts and disasters}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {371--382}, publisher = {EDP-Sciences}, volume = {33}, number = {3}, year = {1999}, mrnumber = {1721641}, zbl = {1016.90007}, language = {en}, url = {http://archive.numdam.org/item/RO_1999__33_3_371_0/} }
TY - JOUR AU - Artalejo, J. R. AU - Gómez-Corral, A. TI - Computation of the limiting distribution in queueing systems with repeated attempts and disasters JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 1999 SP - 371 EP - 382 VL - 33 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/RO_1999__33_3_371_0/ LA - en ID - RO_1999__33_3_371_0 ER -
%0 Journal Article %A Artalejo, J. R. %A Gómez-Corral, A. %T Computation of the limiting distribution in queueing systems with repeated attempts and disasters %J RAIRO - Operations Research - Recherche Opérationnelle %D 1999 %P 371-382 %V 33 %N 3 %I EDP-Sciences %U http://archive.numdam.org/item/RO_1999__33_3_371_0/ %G en %F RO_1999__33_3_371_0
Artalejo, J. R.; Gómez-Corral, A. Computation of the limiting distribution in queueing systems with repeated attempts and disasters. RAIRO - Operations Research - Recherche Opérationnelle, Tome 33 (1999) no. 3, pp. 371-382. http://archive.numdam.org/item/RO_1999__33_3_371_0/
1. New results in retrial queueing Systems with breakdown of the servers, Statist. Neerlandica, 1994, 48, p. 23-36. | MR | Zbl
,2. Steady state solution of a single-server queue with linear request repeated, J. Appl. Probab., 1997 , 34, p. 223-233. | MR | Zbl
and ,3. Analysis of a stochastic clearing system with repeated attempts, Communications in Statistics-Stochastic Models, 1998, 14, p. 623-645. | MR | Zbl
and ,4. The workload in the M/G/1 queue with work removal, Probab. Engineering and Informational Sci., 1996, 10, p. 261-277. | MR | Zbl
and ,5. A queueing network model with catastrophes andproduct form solution, Operations Research Letters, 1995, 18, p. 75-79. | MR | Zbl
,6. Retrial Queues, Chapman and Hall, London, 1997. | Zbl
and ,7. G-Networks with multiple classes of positive and negative customers, Theoret. Comput. Sci., 1996, 155, p. 141-156. | MR | Zbl
, and ,8. Queues with negative arrivals, J. Appl. Probab., 1991, 28, p. 245-250. | MR | Zbl
, and ,9. Queueing networks with negative and positive customers and product form solution, J. Appl. Probab., 1991, 28, p. 656-663. | MR | Zbl
,10. Stability of product form G-Networks, Probab. Engineering and Informational Sci., 1992, 6, p. 271-276. | Zbl
and ,11. G-Networks with triggered customer movement, J. Appl. Probab., 1993, 30, p. 742-748. | MR | Zbl
,12. G-Networks with signals and batch removal, Probab. Engineering and Informational Sci., 1993, 7, p. 335-342.
,13. G-Networks with multiple classes of signals and positive customers, European J. Oper. Res., 1998, 108, p. 393-405 | Zbl
and ,14. The M/G/1 queue with negative customer, Adv. Appl.Probab., 1996, 28, p. 540-566. | MR | Zbl
and ,15. A Pollaczek-Khintchine formula for M/G/1 queues with disasters, J. Appl. Probab., 1996, 33, p. 1191-1200. | MR | Zbl
and ,16. Algorithmic methods for single server Systems with repeated attempts, Statist Neerlandica, 1984, 38, p. 23-32. | MR | Zbl
,17. Analysis of an M/G/1 queue with two types of impatient units, Adv, Appl. Probab., 1995, 27, p. 840-861. | MR | Zbl
and ,18. Commutation of the state probabilities in a class of semi-regenerative queueing Models, J. Janssen, Ed., Semi-Markov Models: Theory and Applications Plenum Press, New York and London, 1986, p. 111-130. | MR
,19. Semi-stationary clearing processes, Stochastic Process. Appl., 1978, 6, p. 165-178. | MR | Zbl
and ,20. Stochastic clearing Systems, Stochastic Process. Appl., 1974, 2, p.85-113. | MR | Zbl
,21. Stochastic Models: An Algorithmic Approach, John Wiley and Sons, Chichester, 1994. | MR | Zbl
,22. A survey on retrial queues, Queueing Systems, 1987, 2, p. 201-233. | MR | Zbl
and ,