Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution
RAIRO - Operations Research - Recherche Opérationnelle, Tome 33 (1999) no. 4, pp. 383-419.
@article{RO_1999__33_4_383_0,
     author = {Nagih, Anass and Plateau, G\'erard},
     title = {Probl\`emes fractionnaires : tour d'horizon sur les applications et m\'ethodes de r\'esolution},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {383--419},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {4},
     year = {1999},
     mrnumber = {1735445},
     zbl = {1016.90065},
     language = {fr},
     url = {http://archive.numdam.org/item/RO_1999__33_4_383_0/}
}
TY  - JOUR
AU  - Nagih, Anass
AU  - Plateau, Gérard
TI  - Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1999
SP  - 383
EP  - 419
VL  - 33
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/RO_1999__33_4_383_0/
LA  - fr
ID  - RO_1999__33_4_383_0
ER  - 
%0 Journal Article
%A Nagih, Anass
%A Plateau, Gérard
%T Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1999
%P 383-419
%V 33
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/item/RO_1999__33_4_383_0/
%G fr
%F RO_1999__33_4_383_0
Nagih, Anass; Plateau, Gérard. Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution. RAIRO - Operations Research - Recherche Opérationnelle, Tome 33 (1999) no. 4, pp. 383-419. http://archive.numdam.org/item/RO_1999__33_4_383_0/

1. J. Abrham et S. Luthra, Comparison of duality models in fractional linear programming, Zeitschrift Oper. Res., 1977, 21, p. 125-130. | MR | Zbl

2. S. C. Agrawal et M. Chand, A note on integer solutions to linear fractional interval programming problems by Branch and Bound technique, Naval Res. Logist. Quart., 1981, 28, n°4, p. 671-677. | MR | Zbl

3. Y. Anzai, On integer fractional programming, J. Oper. Res. Soc. Japan, 1974, 17, n° l, p. 49-69. | MR | Zbl

4. H. Arsham et A. B. Khan, A complete algorithm for linear fractional programs, Comput. Math. Appl., 1990, 20, n°7, p. 11-23. | MR | Zbl

5. E. Balas, An additive algorithm for solving linear programs with zero-one variables, Oper. Res., 1965, 13, n°4, p. 517-546. | MR | Zbl

6. C. R. Bector, Duality in nonlinear fractional programming, Zeitschrift Oper. Res., 1973, 17, p. 183-193. | MR | Zbl

7. B. Bereanu, Decision regions and minimum risk solutions in linear programming, in: A. Prekopa, Ed., Colloquium on applications of mathematics to economics, Budapest, 1963, Publ. house of the Hungarian academy of sciences, Budapest, 1965, p. 37-42. | Zbl

8. G. R. Bitran et T. L. Magnanti, Duality and sensitivity analysis for fractional programs, Oper. Res., 1976, 24, n°4, p. 675-699. | MR | Zbl

9. M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest et R. E. Tarjan, Time bounds for selection, J. Comput. Syst. Sci., 1973, 7, p. 448-461. | MR | Zbl

10. P. Boucher, A. Nagih et G. Plateau, Méthodes heuristiques pour le problème hyperbolique en variables 0-1, Optimizations Days, Montréal, Canada, mai 1996.

11. S. Chandra et M. Chandramohan, A Branch and Bound Method for Integer Nonlinear Fractional Programs, ZAMM, 1980, 60, p. 735-737. | MR | Zbl

12. S. Chandra et M. Chandramohan, A note on integer linear fractional programming, Naval Res. Logist. Quart., 1980, 27, p, 171-174. | MR | Zbl

13. A. Charnes et W. W. Cooper, Programming with linear fractional functionals, Naval Res. Logist. Quart., 1962, 9, p. 181-186. | MR | Zbl

14. B. D. Craven, Fractional Programming, Helderman, Berlin, 1988. | MR | Zbl

15. C. Derman, On sequential decisions and Markov chains, Management Sci., 1962, 9, p. 16-24. | MR | Zbl

16. W. Dinkelbach, On nonlinear fractional programming, Management Sci., 1967, 13, p. 492-498. | MR | Zbl

17. M. Florian et P. Robillard, Programmation hyperbolique en variables bivalentes, Revue Française d'Informatique et de Recherche Opérationnelle, 1971, 5, n°1, p. 3-9. | EuDML | Numdam | MR | Zbl

18. A. M. Geoffrion, An improved implicit enumeration approach for integer programming, Oper. Res., 1969, 17, p. 437-454. | Zbl

19. A. M. Geoffrion, The Lagrangean Relaxation for Integer Programming, Math.Programming, 1974, 2, p. 82-114. | MR | Zbl

20. F. Glover, Surrogate constraints, Oper. Res., 1968, 16, n°4, p. 741-749. | MR | Zbl

21. L. S. Gold'Stein, Dual problems of convex and fractionally-convex programming in functional spaces, Soviet Math. Dokl., 1967, 8, p. 212-216. | Zbl

22. D. Granot et F. Granot, On solving fractional (0, 1) programs by implicit enumeration, INFOR, 1976, 14, p. 241-249. | MR | Zbl

23. D. Granot et F. Granot, On integer and mixed integer fractional programming problems, Ann. Discrete Math., 1977, I, p. 221-231. | MR | Zbl

24. M. Gruspan, Fractional programming: A survey, Technical Report 50, Department of Industrial and Systems Engineering, University of Florida, 1971.

25. M. Grunspan et M. E. Thomas, Hyperbolic integer programming, Naval Res. Logist. Quart., 1973, 20, n°2, p. 341-356. | MR | Zbl

26. M. Guignard et S. Kim, Lagrangean decomposition for integer programming: A model yielding stronger Lagrangean bounds, Math. Programming, 1987, 32, p. 215-228. | MR | Zbl

27. E. Gutenburg, Einfuhrung in die Betriebswirtschaftlehre, Gabler Wiesbaden, 1975.

28. P. L. Hammer et S. Rudeanu, Boolean methods in operations research and related areas, Springer, Berlin - New York, 1968. | MR | Zbl

29. P. Hansen, M. Minoux et M. Labbé, Extension de la programmation linéaire généralisée au cas des programmes mixtes, C. R. Acad. Sci. Paris Sér. I Math., 1987, 305, p. 569-572. | MR | Zbl

30. P. Hansen, M. V. Poggi De Aragao et C. C Ribeiro, Hyperbolic 0-1 programming and query information retrieval, Math. Programming, 1991, 52, p. 255-263. | MR | Zbl

31. S. Hashizume, M. Fukushima, N. Katoh et T. Ibaraki, Approximation Algorithms for combinatorial fractional programming problem, Math. Programming, 1991, 37, p. 255-267. | MR | Zbl

32. M. H. Heine, Distance between sets as an objective measure of retrieval effectiveness, Information Storage and Retrieval, 1973, 9, p. 181-198. | Zbl

33. E. Heinen, Grundlagen betriebswirtschaftlicher Entscheidungen, Das Zielsystem der Unternehmung Gabler Wiesbaden, 1971.

34. T. Ibaraki, Parametric approaches to fractional programs, Math. Programming, 1983, 26, p. 345-362. | MR | Zbl

35. O. H Ibarra et C. E. Kim, Fast approximation algorithms for the knapsack and sum of subsets problems, J. Assoc. Comput. Machinery, 1975, 22, n°4, p. 463-468. | MR | Zbl

36. J. R. Isbell et W. H Marlow, Attribution games, Naval Res. Logist. Quart., 1956, 3, p. 71-94. | MR | Zbl

37. H Ishii, T. Ibaraki et H. Mine, A primal cutting plane algorithm for integer fractional programming problems, J. Oper. Res. Soc. Japan, 1976, 19, p. 228-244. | MR | Zbl

38. H. Ishii, T. Ibaraki et H. Mine, Fractional Knapsack problems, Math. Programming, 1977, 13, p. 255-271. | MR | Zbl

39. J. G. Kallberg et W. T. Ziemba, Generalized Concave Functions in Stochastic Programming and Portfolio Theory. in: S. Schaible and W. T. Ziemba, eds., Generalized Concavity in Optimization and Economics, Academic Press, New York 1981, p. 719-767. | Zbl

40. M. Klein, Inspection-maintenance-replacement schedule under Markovian deterioration, Management Sci., 1963, 9, p. 25-32.

41. L. S. Lasdon, Optimization Theory for Large Systems, Collier-MacMillan, 1970. | MR | Zbl

42. S. Martello et P. Toth, Knapsack Problems, J. Wiley & Sons, 1990. | MR | Zbl

43. B. Martos, Hyperbolic programming, Naval Res. Logist. Quart., 1964, 11, p. 135-155. | MR | Zbl

44. B. Martos, The Direct Power of Adjacent Vertex Programming Methods, Management Sci., 1965, 12, n°3, p. 241-252. | MR | Zbl

45. B. Martos, Nonlinear programming: Theory and methods, North-Holland, Amsterdam, 1975. | MR | Zbl

46. N. Meggido, Combinatorial optimization with rational objective functions, Math. Oper. Res., 1979, 4, n°4, p. 414-424. | MR | Zbl

47. P. Michelon et N. Maculan, An algorithm for the mixed or integer fractional programming, Research Report ES-161-88, University of Rio de Janeiro, 1988.

48. P. Michelon et N. Maculan, Lagrangean methods for 0-1 quadratic problems, Discrete Applied Mathematics, 1993, 42, p. 257-269. | MR | Zbl

49. K. M. Mjelde, Allocation of resources according to a fractional objective, EuropeanJ. Oper. Res., 1978, 2, p. 116-124. | MR | Zbl

50. K. M. Mjelde, Methods of the Allocation of Limited ressources, J. Wiley and Sons, Chichester, 1983. | Zbl

51. A. Nagih, Sur la résolution des programmes fractionnaires en variables 0-1, Thèse de Doctorat, Université Paris 13, France, juin 1996.

52. A. Nagih et G. Plateau, A Lagrangian Decomposition for 0-1 Hyperbolic Programming Problems, Int. J. Math. Algorithms, to appear. | Zbl

53. A. Nagih et G. Plateau, Méthodes lagrangiennes pour les problèmes hyperboliques en variables 0-1, FRANCORO: Rencontres Francophones de Recherche Opérationnelle, Mons, Belgique, juin 1995. | Numdam | Zbl

54. A. Nagih et G. Plateau, An exact Method for the 0-1 Fractional Knapsack Problem, INFORMS, New Orleans, USA, 29 octobre - 1er novembre 1995.

55. A. Nagih et G. Plateau, Sur la résolution des programmes fractionnaires en variables 0-1, CIRO : Conférence Internationale en Recherche Opérationnelle, Marrakech, Maroc, juin 1996. | Zbl

56. A. Nagih et G. Plateau, Dualité lagrangiennne en programmation fractionnaire concave-convexe en variables entières, Rapport de Recherche, LIPN 96, Université Paris 13, 1996.

57. A. Nagih et G. Plateau, A Partition Algorithm for 0-1 unconstrained hyperbolic programs, Investigación Oper., 1999, 8, n° 1. | Zbl

58. C. H. Papadmitriou et K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982. | MR | Zbl

59. J. Ponstein, Seven Kinds of convexity, SIAM Review, 1967, 9, n°1. | MR | Zbl

60. T. Radzik, Newton's method for fractional combinatorial optimization, Report STAN-CS-92-1406, Stanford university, California, 1992. | Zbl

61. P. Robillard, 0-1 hyperbolic programming, Naval Res. Logist. Quart., 1971, 18, p. 47-58. | MR | Zbl

62. A. L. Saipe, Solving a (0, 1) hyperbolic program by branch and bound, Naval Res.Logist. Quart., 1975, 22, p. 397-416. | Zbl

63. S. Schaible, Duality in fractional programming: a unified approach, Oper. Res., 1976, 24, n°3, p. 452-461. | MR | Zbl

64. S. Schaible, Fractional programming: Applications and algorithms, European J. Oper. Res., 1981, 17, p. 111-120. | MR | Zbl

65. S. Schaible et T. Ibaraki, Fractional programming, European J. Oper. Res., 1983, 12, p. 325-338. | MR | Zbl

66. I. C. Sharma et K. Swarup, On duality in linear fractional functionals programming, Zeitschrift für Operations Research, 1972, 16, p. 91-100. | MR | Zbl

67. I. M. Stancu-Minasian, Applications of the fractional programming, Econom. Comput. Econom. Cybernet. Stud. Res., 1980, 14, p. 69-86. | MR | Zbl

68. C. J. Van Rijsbergen, Function of evaluation, The Journal of Documentation, 1974, 30, n°4, p. 365-373.

69. V. Verma, Constrainted Integer Linear Fractional Programming Problem, Optimization, 1990, 21, n°5, p. 749-757. | MR | Zbl

70. V. Verma, H. C. Bakhshi et M. C. Puri, Ranking in integer linear fractional programming problems, Methods and ModeIs of Operations Research, 1990, 34, p. 325-334. | MR | Zbl

71. H. M. Wagner et J. S. C. Yuan, Algorithmic equivalence in linear fractional programming, Management Sci., 1968, 14, p. 301-306. | MR | Zbl

72. T. Weir et B. Mond, Duality for Frational Programming without Constraint QualificationUtilitas Mathe., 1990, 38, p. 193-197. | MR | Zbl

73. H. P. Williams, Experiments in the formulation of integer programming problems, Math. Programming Studi, 1974, 2, p. 180-197. | MR | Zbl

74. H. Wolf, Parametric Analysis in linear fractional programming, Oper. Res., 1986, 34, n°6, p. 930-937. | MR | Zbl

75. W. T. Ziemba, C. Parkan et R. Brooks-Hill, Calculation of investment portfolios with risk free borrowing and lending, Management Sci., 1974, 21, p. 209-222. | Zbl