@article{RO_1999__33_4_447_0, author = {Burachik, Regina S. and Iusem, Alfredo N.}, title = {A generalized proximal point algorithm for the nonlinear complementarity problem}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {447--479}, publisher = {EDP-Sciences}, volume = {33}, number = {4}, year = {1999}, mrnumber = {1735448}, zbl = {0961.90117}, language = {en}, url = {http://archive.numdam.org/item/RO_1999__33_4_447_0/} }
TY - JOUR AU - Burachik, Regina S. AU - Iusem, Alfredo N. TI - A generalized proximal point algorithm for the nonlinear complementarity problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 1999 SP - 447 EP - 479 VL - 33 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/RO_1999__33_4_447_0/ LA - en ID - RO_1999__33_4_447_0 ER -
%0 Journal Article %A Burachik, Regina S. %A Iusem, Alfredo N. %T A generalized proximal point algorithm for the nonlinear complementarity problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 1999 %P 447-479 %V 33 %N 4 %I EDP-Sciences %U http://archive.numdam.org/item/RO_1999__33_4_447_0/ %G en %F RO_1999__33_4_447_0
Burachik, Regina S.; Iusem, Alfredo N. A generalized proximal point algorithm for the nonlinear complementarity problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 33 (1999) no. 4, pp. 447-479. http://archive.numdam.org/item/RO_1999__33_4_447_0/
1. An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math. Programming, 1995, 71, p. 77-100. | MR | Zbl
and ,2. The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming, U.S.S.R. Comput. Math. and Math. Phys., 1967, 7, n° 3, p. 200-217. | MR | Zbl
,3. Opérateurs Monotones Maximaux et Semi-groupes de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam. | Numdam | Zbl
,4. Image d'une somme d'opérateurs monotones et applications, Israel J. Math., 1976, 23, n° 2, p. 165-186. | MR | Zbl
and ,5. Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 1976, 18, n° 2. | MR | Zbl
,6. A generalized proximal point algorithm for the variational inequality problem in a Hilbert space, SIAM J. Optim., 1998, 8, p. 197-216. | MR | Zbl
and ,7. An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming, 1998, 81, p. 373-400. | MR | Zbl
, and ,8. Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 1967, 2, p. 299-318. | MR | Zbl
,9. Finite dimensional variational inequalities and nonlinear complementarity problems: A survey of theory, algorithms and applications, Math. Programming, 1990, 48, p. 161-220. | MR | Zbl
and ,10. Entropy-like proximal methods in convex programming, Math. Oper. Res., 1994, 19, p. 790-814. | MR | Zbl
, and ,11. Convergence rate analysis of nonquadratic proximal and augmented Lagrangian methods for convex and linear programming, Math. Oper. Res., 1995, 20, p. 657-677. | MR | Zbl
and ,12. On some properties of paramonotone operators, J. Convex Analysis, 1998, 5, p. 269-278. | MR | Zbl
,13. Complementarity problems over cones with monotone and pseudomonotone maps, J. Optim. Theory Appl., 1976, 18, p. 445-455. | MR | Zbl
,14. An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. | MR | Zbl
and ,15. Two observations about the method of successive approximations, Uspekhi Mat. Nauk, 1955, 10, p. 123-127. | MR
,16. The proximal algorithm, in International Series of Numerical Mathematics, J. P. Penot, Ed., Birkhauser, Basel, 1989, 87, p. 73-87. | Zbl
,17. Régularisation d'inéquations variationelles par approximations succesives, Revue Française d'Informatique et Recherche Opérationnelle, 1970, 2, p. 154-159. | Numdam | MR | Zbl
,18. Algorithmes pour la résolution de problèmes d'optimisation et minimax, Thèse d'État, Université de Grenoble, Grenoble, 1972.
,19. Weak convergence of the sequence of succesive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. (N.S.), 1967, 75, p. 591-597. | MR | Zbl
,20. Nonlinear Mappings of Monotone Type, Editura Academiei, Bucarest, 1978. | MR | Zbl
and ,21. On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 1970, 149, p. 75-88. | MR | Zbl
,22. Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 1976, 14, p. 877-898. | MR | Zbl
,23. Convex Analysis, Princeton University Press, New Jersey, 1970. | MR | Zbl
,24. Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res., 1992, 17, p. 97-116. | MR | Zbl
,25. Convergence of proximal-like algorithms, SIAM J. Optim., 1997, 7, p. 1069-1083. | MR | Zbl
,