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TRIVIAL CASES FOR THE KANTOROVITCH PROBLEM (*)

by Serge DUBUC (1), Issa KAGABO (l) and Patrice MARCOTTE (2)

Communieated by Jean-Pierre CROUZEIX

Abstract. - Let X and Y be two compact spaces endowed with respective measures \x and v
satisfying the condition (J>(X) = v{Y). Let cbe a continuons function on the product space 1 x 7 .
The mass transfer problem consists in determining a measure f on X xY whose marginals coïncide

with \i and v, and such that the total cost \ c(x> y) d^{x, y) be minimized. We first show that if

the cost function c is decomposable, Le., can be represented as the sum of two continuons functions
defined on X and Y, respectively, then every feasible measure is optimal. Conversely, when X is
the support of fx and Y the support of v and when every feasible measure is optimal, we prove
that the cost function is decomposable.

Keywords: Continuous programming, transportation.

1. INTRODUCTION

The mass transfer problem was initially studied by Monge [6] in 1781.
His work was pursued by Appel [2] in 1887 and Appel [3] in 1928. In
1942, Kantorovitch [1] formulated the problem in a functional space, and
this approach has been adopted since. This problem, a typical problem of
continuous programming, has been considered by many authors, among
which Anderson and Nash [1].

Specifically, let X and Y be two compact spaces endowed with respective
measures \x and v satisfying the condition JJL{X) = v(Y). Let c be a
continuous function on the product space 1 x 7 . The Kantorovitch problem
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consists in determining a measure £ on X x Y whose marginals coincide
with fjb and u, and such that the total cost

/ ) { y ) (1)
XxY

be minimized. The dual of the above linear program consists in determining
two real continuous functions r and s defined on X and on Y, respectively,
such that

r ( x ) + s(y) < c ( z , y ) V ( s , y ) E X x Y (2 )

a n d t h a t t he o b j e c t i v e

/ r{x)dn{x)+ [ s(y)du(y) (3)
X JY

be maximized. The primai problem (1) and the dual problem (2, 3) are
equivalent in the sensé that they admit extremal optimal solutions whose
objective values are equal. In this paper we show that, under restrictive
assumptions on the cost function c, the objective

IL ( ) ( y ) (4)
XxY

is constant over the set of measures £ defined over the product space XxY
having respective marginals \x and v. Next we prove that a slightly modified
converse statement holds as well.

2. PRELIMINARY CONSIDERATIONS

Throughout the paper, we will dénote by PQ^ the projection of a measure
£ over a set C and by 5f the support of a measure £, Le., the set of points
p of its domain such that £ is not the zero measure on any neighborhood
of the point p.

The Kantorovitch problem, or primai problem, is defined as

7 =
'JXXY (5)

subject to p - ^ — " K '

We say that a measure on the space X x Y is primal-feasible if, for any
compact subset K Ç X and L C y we have that £(ÜT x y ) = /x(iT) and
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TRIVIAL CASES FOR THE KANTOROVITCH PROBLEM 5 1

x L) — v(L). This condition holds if and only if, for each pair of
continuous functions </> aiid ip defined on X and Y, respectively, we have:

and

ff 0(x) <*«:*;, y) = f <f>{x)dp(x)
JJXxY JX

,y)= / ip(y)du(y).
Jy

/
xxY

In particular, the marginals of the measure £ are (i and v.
Whenever the transportation cost

IL'XxY

of a feasible measure £o is equal to 7 we say that £0 is optimal.
Kantorovitch [5] has shown that the set of optimal measures is nonempty.

Now let r and s be continuous real functions over the sets X and Y,
respectively; The dual problem of (5) is defined as

f f
7* = sup / r(x)dfj,(x)+ ƒ s{y)dv{y)

(6)
subject to r(x) + s (y) < c{x, y) ^ '

(x,y)eXxY.

If ^ is primal-feasible and the pair (r, 5) is dual-feasible, then we have the
weak duality inequality:

/ r{x)dii(x)+ / s(y)dv(y) < c{x,y)d£>(x,y).
JX JY JJXxY

Feasible solutions to the above dual problem (6) are said to form a
(continuous) cost partition. A cost partition (ro,$o) is dual-optimal if it
achieves the optimal dual objective 7*, Le.,

/ ro(x) dfj,(x)'+ / so(y)dv(y) =7*.
Jx JY

Dubuc and Tanguay [4] have proved that the set of optimal dual solutions
is nonempty.

vol. 34, n° 1, 2000
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3. CHARACTERIZING AN OPTIMAL PARTITION

The following theorem, due to Dubuc and Tanguay [4], pro vides a criterion
for checking the optimality of a cost partition.

THEOREM 1 : Let J be a compact subset of Y and let us define the set
I(J) — {x G X : 3y G J : r{x) + s (y) — c(x, y)}. A cost partition (r, s) is
dual-optimal if and only if fjb(I) > v{J) for every compact subset J ofY.

Let us illustrate this resuit by an example where we wish to détermine
a measure £ defined on the square [0,1] x [0,1], whose marginals are the
Lebesgue measures restricted to the interval [0,1], and that minimizes the
objective

II
Jo Jo
/o Jo

This problem can be rewritten as:

inf / / \x-y\d£(x.,y)
£ Jo Jo

subject to ^[o,i]£ — M (Lebesgue measure).

Its dual problem is:

sup 7 r(x)dx+ / s{y)dy
(r,s) Jo Jo

subject to r(x) + s (y) < \x - y\

( s , y ) € [ 0 , l ] x [ 0 , l ] .

Let us show that setting r(x) — x and s (y) = -y yields an optimal partition.
To this effect, let J be a compact subset of [0,1], We have:

I{J) - {x G [0,1] : 3y G J : r(x) + s (y) = \x - y\}.

From the theorem, it is sufficient to show that J Ç I. Indeed, y G I(J)
whenever y E J since

r(y) + s(y) = y - y = \y - y\.

The optimal value for this problem is

f1 f1

7 = 7 * = / xdx + I —y dy = 0.
Jo Jo
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TRIVIAL CASES FOR THE KANTOROVITCH PROBLEM 53

We notice that setting r(x) = 0 and s (y) = 0 for ail (x,y) G [0,1] x [0,1]
also yields an optimal partition.

Let us now consider the measure:

x(AnD)

where D dénotes the main diagonal of the unit square and À the Lebesgue
measure. Since

Jo Jo

the measure £o is primal-optimal.
Notice that dual solutions are, at best, unique up to an additive constant.

Indeed, whenever (r(x),s(y)) is an optimal partition, so is (r(x)+c, s(y)—c)9

for any number c. In the previous example, we exhibited two dual solutions,
(x,—y) and (0,0), whose différence is nonconstant.

4. THE CASE OF DECOMPOSABLE COSTS

This section includes the paper's main results. We first show that if the
cost function c is decomposable, Le., can be represented as the sum of two
conti-nuous functions defined on X and Y9 respectively:

c(xy y) = ƒ (x) + g(y) V(z, y)eXxY,

then every feasible measure is optimal. Next we prove that a modified form
of the reverse statement holds.

PROPOSITION 2: If the cost function c is decomposable, then the primai

objective function is constant over the set of primal-feasible measures.

Proof: Let £ be a measure with respective marginals JJL and ZA We write:

f(x)dÇ(x,y)= f f(x)dp(x)
JX

/ / 9(y)dÇ(x,y)= / g{y)dv{y).
JJXxY JY

/ )
JXxY JX

and
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Hence:

= f f
J JX

f
XxY

= / / f(x)dÇ(x,y) + f f g{y)di{x,y)
J JXxY JJXxY

- f f(x)d^x) + f g(y)du(y),
Jx JY

and the resuit follows from the observation that this last term is constant. D

THEOREM 3: Let the primai objective function be constant over the set
of primai feasible measures. Then there exist continuons functions ƒ and g
defined over the sets X and Y, respectively, such that c is decomposable
over S^ x Su.

Proof: The measure £o = (M ® ̂ VM^O 1S clearly primal-feasible, hence
it is also primal-optimal. Let (ro, 5o) be a dual-optimal solution; there exists
as it was said at the end of Section 2. The following relation holds by the
strong duality resuit (Le. the primai and the dual problems have the same
optimal objective value):

/ ro(x) dfj,(x) + / so(y)dv(y)= / / c(x,y)d£o(x,y) = <y (7)
Jx JY JJXXY

and
ro(x) + 5o (y) < c(x,y) V(xyy) G l x 7 . (8)

Now, since ô has respective marginals JJL and i/, there follows:

/ ro(x)dfj,(x) = / / ro(x)d£o(x,y)
JX JJXxY

ƒ so{y)dv(y)= / / so{y)d£o(xyy).
JY JJXXY

Therefore (7) is equivalent to

/ / iro(x) + so(y))dCo{xiy) = / / c(x,y)d£o(x,y) = 7- (9)
J JXxY J JXxY

From the relationships (8) and (9) we conclude that

= c(xyy) V{x,y) G <%0.
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For any points XQ and y$ in 5^ and SU9 respectively, we have that
(^OÏJ/O) £ SÇQ and there follows:

n>Oo) + so(yo) = c(xo,yo),

from which we infer that c is decomposable over S^ x S^, as required. •

We conclude this section with two simple results, whose proofs are
straightforward.

Remark 1: If c is decomposable then, for any four-tuple {x1 G X,
y1 e Y,x e X,y e Y) there holds:

c(ar, y) - c(x7 y') + c(x', y) - c(x\y) = 0. (10)

Remark 2: If there exists a pair (xf,yf) e X x Y such that

c{x,y) - c{x,y!) + c{x\yf) - c(xf,y) = 0 V(ar,y) G l x Y , (11)

then the cost function c is decomposable.

Proof: It suffices to consider the functions f(x) — c(x, yf) — c(xf,yf) and
g(y) = c{x'}y). •

5. EXAMPLES

In this section we dénote by F(£) the primai objective function of the
Kantorovitch problem. We consider three examples in which X and Y are
subsets of the reals. The usefulness of Theorem 1 is illustrated in Example 3.

Example 1: Let c(x,y) ~ \y — x\ and the measures \x and v have equal
mass. We want to find conditions under which the functional F is constant
over the set of measures on X x Y with respective marginals equal to /x and v.
If Sfx Ç (—oo, a] and S» Ç [a, +oô) for-some number a, then c(x, y) — y—x,
and Proposition 2 ensures that F is constant. This conclusion also holds if
Sfx Ç [a, +oo) and Sv Ç ( — oo, a], in which case c(x, y) = x — y.

Example 2 (nonconstant F): Let, as before, c(xyy) = |y — x\ and consider
the measures:

[0,2/3])
= A(5n [1/3,1]),
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where À dénotes Lebesgue's measure. Now S^ = [0, 2/3] and 5^ = [1/3,1].
Since

c(0,1/3) - c(0,1) + c(2/3,1) - c(2/3,1/3) = - 2 / 3 ^ 0.

Remark 2 ensures that c is not decomposable on [0, 2/3] x [1/3,1], Hence,
by Theorem 3, F is not constant.

Example 3: The dual program of the above example takes the form

sup / r(x) dfi(x) + / s(y) du (y)

•/[0.2/3] 7[i,l]subject to r(x) + s (y) < \y - x\

x G [0,2/3], y G [1/3,1].

Based on dual optimality, let us détermine primal-optimal solutions. From
Theorem 1, a cost partition is optimal if and only if /i(/) > u(J), where J
is a compact subset of the interval [1/3,1] and

I{J) = {x e [0, 2/3] : 3y E J : r(x) + s (y) = \y - x\}-

The partition (r(x) — —xys(y) = y) is optimal. Indeed, for any compact
subset J of [1/3,1],

k| l :3yG J y - x = \y - x\\= [o, ft] n |"o, |

where b is the least upper bound of J. we obtain:

• b > 2/3 => I(J) = [0,2/3] and M C V ) ) > K A

• 6 < 2/3 ^ I ( J ) = [0,6]. Since J Ç [1/3,6], we have that

Now: LJL{I{J)) = M([0, 6]) = 6 > 6 - 1/3 > u(J).

The problem's optiml value is

f f r2/3 f1 2
- ƒ x d/i(a;) + ƒ y du (y) = - ƒ . xdx+ ydy = -

Let us consider the measure ^i defined as

Recherche opérationnelle/Opérations Research



TRIVIAL CASES FOR THE KANTOROVITCH PROBLEM 57

where D = {(x,y) : y — x + 1/3,x G [0,2/3]}, and À is Lebesgue's
measure defined on the segment D. The measure £1 is feasible, since its
marginals are \i and v, Furthermore it is optimal since

/ \yx\dCi(x,y) l/3[[ . d^x^) \ \
JxxY JJxxY 3 3 9

Let us now consider the measure £2 defined as

= ^ [\(A n Di) + \(A n D%)\

where Dl = {(x,y) : y = ^ + 2/3 ,^ G [0,1/3]}, D2 = {(x,y) : y - x,
x e [1/3,2/3]} and À is the one dimensional Lebesgue measure. The
marginals of £2 are \x and v. We set

Pi - {(x,y) :0<x< 1/3, 1/3 < y < 1}

P2 = {(x,y) : 1/3 < x < 2/3, 1/3 < y < !}•

We obtain:

/ / \y-x\d£2(x,y)= / / \y-x\d£2(x,y)+ / / \y-
JjXxY JJp1 JJp2

Now, since y — x over the set Sç2 Pi P2» there follows:

ƒ
and £2 is optimal, since its objective is equal to 2/9:

/ / \y-x\d£2(x,y)= / / | y - s
JJXxY JJP1

Actually, a solution is primal-optimal if it is a convex combination of £1
and £2-

If the support of £ is contained in {(x,y) : y > x}, then |y — x\ = y — x
almost everywhere. Furthermore:

/ / \y-x\d£(x,y)= / ydv(y)- ƒ x
J JXxY JY JX

vol. 34, n° 1, 2000
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Any measure having Lebesgue measures as marginals and being uniformly
distributed over the k + 2 diagonals given in Table 1 is optimal (see also
Fig. 1).
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1

- -

fc = O

/

—
i
1
j

/ \

1 1 ,

jfc = l

Ï2 T
6
2
3

1
3

yr

A: = 2

—
i

1
i

A
i ,

12 6 3

Figure 1. - Three optimal measures.

TABLE 1
Diagonal segments supporting the optimal measure.

square diagonal segment

o r lU 2 2 ^
"/

i

2
Ï2'6

1 11
6'Ï2

2
3

k

k + 1

3x2*

0,1-

, 1 - 3 x 2k~1

1 \ / 1
3 x 2*"1

.V'1 3x2fcJ'V3x2fc'1

3 x 2k

6. CONCLUSION

The decomposability of a cost function is a very restrictive property. Note
however that nondecomposable functions such as c(x,y) = \x — y\ become
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decomposable when they are restricted to spécifie subrectangles of their
domain of définition. This helps to understand the geometrical structure of
solution sets for some Kantorovitch problems. For instance, in Example 3, the
partial decomposability of the cost function enabled us to obtain infinitely
many extremal optimal solutions
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