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EXPERIENCES WITH STOCHASTIC ALGORITHMS
FOR A CLASS OF CONSTRAINED

GLOBAL OPTIMISATION PROBLEMS (*)

by Abdellah SALHI C1), L.G. PROLL (2), D. Rios INSUA (3)
and J.I. MARTIN (3)

Communicated by J.A. FERLAND

Abstract. - The solution of a variety of classes of global optimisation problems is required in
the implementation of a framework for sensitivity analysis in multicriteria décision analysis. These
problems have linear constraints, some of which have a particular structure, and a variety of
objective functions, which may be smooth or non-smooth. The context in which they ar is e implies a
needfor a single, robust solution method. The literature contains few expérimental results relevant
to such a need. We report on our expérience with the implementation ofthree stochastic algorïthms
for global optimisation: the multi-level single linkage algorithm, the topographical algorithm and
the simulated annealing algorithm. Issues relating to their implementation and use to solve practical
problems are discussed. Computational results suggest that, for the class of problems considered,
simulated annealing performs well

Keywords: Global optimisation, stochastic methods, constraints, multistart, simulated annealing.

1. INTRODUCTION

The Global Optimisation (Minimisation) Problem (GO) can be stated as:
let ƒ be a function from Rn to R and A C Rn, then find x* e A such
that Vx e A9 f(x*) < f(x). The problem is known to be hard, both from a
theoretical and a practical viewpoint (Murty and Kabadi 1987).
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Our need to solve GO problems arises from attempts to implement a
framework for discrete multi-criteria décision making which is heavily based
on mathematical programming (Proll et al 1993). The package is intended
to be used as an aid to decision-makers' understanding of the implications
of, and possible inconsistencies in, their judgements during such events as
décision conferences (French 1992). This environment implies the need for
quick and "automatic" solution of the mathematical programmes, probably on
a PC. The sensitivity analysis algorithm filters the set of alternatives through
four phases, dominance, potential optimality, adjacent potential optimality
and distance analysis. Each phase leads to a mathematical programme of
different structure, which also dépends on the form of the évaluation function
and on the distance metric used. Some classes of problem may be nonlinear
and noneonvex, so we cannot rely on local optimisation as this may convey
a false impression of insensitivity. Although some of the classes exhibit
special characteristics, we attempt to handle them as gênerai problems as it is
impractical from a software development viewpoint to implement a different
algorithm for each of the many classes of problem which arise. Hence we
require a robust method. This is reinforced by the fact that, of necessity, we
need to solve the problems generated by our framework "unseen" and in
near real-time; there is no opportunity to "tune" the optimiser.

In the following we shall be concerned with représentatives of two popular
stochastic algorithms for global optimisation: Multistart and Simulated
annealing, Two different variants of the multistart algorithm are considered:
the Multi-level Single Linkage algorithm, (MLSL), (Rinnooy Kan and
Timmer 1987b), and the Topographical method, Torn and Viitanen 1992a).
Issues related to their implementation and use to solve practical problems
arising in our sensitivity analysis context are discussed.

2. STOCHASTIC ALGORITHMS

2.1. Multistart

Multistart represents a broad class of algorithms designed primarily to
improve upon Pure Random Search (Rinnooy Khan and Timmer 1987a).
An issue which is central to the efficient implementation of such algorithms
is that of sampling. Such methods characteristically need to generate a
sample of points which in some sensé "cover" the search space in order
that there is some confidence that all of the best local minima have been
detected, Unfortunately it is well known that sampling in régions defined by
gênerai constraints is difficult (Rubinstein 1982; Smith 1984) so that it is not
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straightforward to adapt MLSL to deal with the constrained GO problem.
Consequently, our approach is to sample from the enclosing hypercube
defined by the bounds on the variables and use a local optimiser which
accepts infeasible starting points.

2.2. Multi-level single linkage

A popular stochastic algorithm for GO is a version of multistart called
the Multi-level Single Linkage algorithm due to Rinnooy Kan and Timmer
(1986, 1987a, 1987b, 1989).

It can be described as follows:
At itération k
1. Draw a uniform random sample of N points in A\ select the 77V points

with lowest fonction value, where 7 is the réduction parameter.
2. Compute the threshold distance

1/n

where v(A) is the volume of A, a is a positive parameter.
3. Perform local optimisation from each selected point xi unless there

is a previously processed point Xj for which / ( X J ) < f{x.\) and
d(xi,Xj) < rk.

4. Stop if ^ Y ^ I ^ < w + 0.5 where w is the number of distinct local
minima found so far.

The practical implementation of this algorithm dépends on the choice of the
parameters (JV, 7, a) which make up the threshold distance. This distance
influences the amount of work required by the search and the quality of the
search before the stopping rule is satisfied: too short and most points in the
reduced sample will be starting points to local optimisation; too long and
very few local optimisations will be required, thus increasing the risk of
missing the global optimum. Yet it is not clear how these parameters can
be chosen other than arbitrarily.

2.3. The topographical algorithm

The underlying strategy of the topographical algorithm (TOPO) of Torn
and Viitanen (1994, 1996) is that a topograph may be constructed by
evaluating the objective fonction at randomly sampled points in A. The
topograph is a directed graph in which nodes represent sample points and
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arcs, directed towards the node with larger function value, connect each
node to its k nearest neighbours. The minimum points in the topograph are
those with no incoming arcs and are good starting points for possible local
optimisations. TOPO can be described as follows:

1. draw a random sample of N points such that, for each pair of points
Xi,Xj, d(xi,Xj) > S where d(.,.) is the Euclidean distance and S a
threshold distance.

2. Identify k nearest neighbours of each sample point.
3. Compute the function values at each sample point and identify the

minima in the topograph, Le. points for which ail k nearest neighbours
do not have a better function value.

4. Perforai local minimisation from (some of) the minima in the topograph.

Some expérimentation is necessary to décide on an appropriate value for
S and the (arbitrarily) chosen sample size N. N can more properly be
regarded as a secondary sample size because points in the topograph are
obtained by sequentially generating a much larger sample and rejecting points
which are closer to others in the sample than the threshold distance. In our
expérience, the rejection rate is extremely high and, consequently, this process
is expensive. A sample of suitable values for n = 2,..., 10 and N — 100,200
for the unit hypercube can be found in Torn and Viitanen (1994). It is also
not clear what value to choose for k. Qualitatively, as k increases, fewer
local minimisations will be performed. This increases the risk of missing
the global minimum, so some compromise is necessary. Algorithm TOPO
is essentially a direct method in which the stopping rule is implicit. It stops
when all promising points are used to start local optimisations, leading to
the choice of the candidate for global minimum.

We considered this method because it had potential advantage for our
application, which involves many minimisations over the same search space.
In such a case, the overhead of generating the sample can be shared.

2.4. Simulated Annealing

Simulated annealing (SA) is a well-established technique for combinatorial
optimisation problems and has been reported to perform well on such
problems in high dimensions with a large number of local minima (Eglese
1990). Based on this success, variants of SA for continuous global
optimisation have been developed (Corana et al 1987; Dekkers and Aarts
1991). The SA algorithm for continuous optimisation considered here is due
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to Dekkers and Aarts (1991). It is modelled as a Markov chain with the
transition probability

{ [ pxy(T)dy ifx£B,

f ff \
/ pxy(T)dy + 1 - / Pxy(T)dy if x e B,

JyeB \ JyeB J
where pxy — f3{T)gxy{T), gxy being the probability distribution function for
generating a point y from a point x a t a fixed value of the controle parameter
T G i2+ , /3(T) the acceptance criterion given by P(T) = min(l, e T )
and B C A.

According to Dekkers and Aarts (1991), a procedure based on a Markov
chain with the above transition probability will converge asymptotically to a
local minimum x of ƒ in B C A, starting from any point XQ. Formally,Ve > 0 : UmrioHmfc^ooProbfxfc E Bf(e) | T} > 1 - e, Vx0.

Hère, Bf(e > 0) is the set of points in A with value close to that of the
minimal point.

The conditions of convergence of such a procedure to the set of minimal
points of ƒ are as follows:

1. A is a bounded subset of Rn\
2. ƒ is a real-valued function defined over A;
3. the number of minima of ƒ over A is finite and they are interior to A;
4. the acceptance criterion is (3(T) defined above;
5. the neighbourhood of a point XQ G A is a subset of A — XQ over which

the génération probability distribution function gxy(T) is defined by:
• Vxo G i , V B c A: m{B) > 0 => Jy€A9xoy{T) > 0, where m{B)

is the Lebesgue measure of the set B\
• gxy(T) = gyx(T);
• 9xy{T) is independant of T.

These conditions, however, are sufficient, but not necessary.
Note that such a procedure can be perceived as an infinité number of

homogeneous Markov chains of infinité length, which makes it impracticable
to implement. A practicable version, however, can be described as the
following SA algorithm.

1. Set x to xo G A, ƒ* to / (x) , Tk to To, Lk to Lo and k to 0;
2. if stopping rule satisfied then Stop;
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3. for l = 1 to Lk do
generate y as a random neighbour of x;
if ( / (y) < / (x) ) then

elseif f e Tk > random[Q, 1) j then

= y;
endif
endfor;

4. k = k + 1;
5. find Lfc and Tfc;
6. go to 2.

In this algorithm parameter Tk is commonly referred as the température.
It slows down the algorithm if it is too high and it removes the global
aspect of the algorithm, Le. uphill moves, if it is too small (Schoen 1991;
Eglese 1990). For T&, we require an initial value, a décrément function for
decreasing it and a final value to use in the stopping condition. We also need
to set the length L& of each Markov chain corresponding to each T&. This
set of parameters is usually referred to as the cooling schedule. An important
différence between SA and multi-start methods is that SA follows a path in
the search space rather than attempts to "cover" it. As we discuss later, this
may allow gênerai constraints to be handled more effectively.

The différence between the cooling schedule we implented and that of
Dekkers and Aarts (1991) is in the way a point in the neighbourhood of the
current one is generated. Also, while they use a local search procedure, we
adapt the coordinate directions method described in Berbee et al (1987) for
detecting non-redundant constraints. This allows us to exploit the structure of
our constraints which comprise linear équations which are "non-overlapping",
Le. variables with non-zero coefficients are present in one équation at most,
together with gênerai linear inequalities. Neighbours of the current point are
found, as described below, by generating a random direction and a random
step length under conditions which allow us to keep feasibility.

Let A be defined by a System of linear équations and inequalities
ai * x(< , ~)b{. Without loss of generality, we assume that in each équation
at least two variables have non-zero coefficients.

1. Find a feasible point x.
2. Generate a direction vector v with equal probability from one of the

n coordinate vectors, Le. generate a random index k in l,...,n. Set
vk — 1, VJ — 0 for j ^ k.
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3. If Xk has non-zero coefficient in equality constraint i9 generate a
random index l, (l / k) in l,...,n such that x\ has non-zero coefficient
in constraint i.
Set v\ = -dik/au.

4. For each inequality j , compute Xj — (bj — aj * x)/(aj * v).
5. If 3j such that Xj = 0 and aj * v > 0, set A+ = 0 else A+ = min{Xj :

Xj > 0).
If 3j such that Àj = 0 and aj * v < 0, set À" = 0 else À~ = max{Aj :
Ai < 0}.

6. Generate u from a uniform distribution on (0,1 ) and set y =
x + (A" + 'u(A+ - A"))v.

The scheme above guarantees that y G A. Although, in our application a
user-supplied feasible point is always available (Proll et al 1993a), such a
point can also be found through

(i) linear programming, or

(ii) local optimisation from an arbitrary starting point.

The SA process performs a local optimisation if a point x is accepted for
which ƒ* —/(x) > 0 | ƒ* | where ƒ* is the current best value of the objective
function and 0 is a small positive value. It will stop when no change of more
than a% is observed in ƒ after p successive decreases of température.

3. COMPUTATIONAL EXPERIMENTS

The algorithms described above were coded in Fortran77 and initially
compared on a set of eleven problems arising in the distance analysis phase of
the sensitivity analysis algorithm. These problems have many local minima,
are subject to nontrivial constraints and include problems of higher dimension
than is often encountered in the literature. The tests were performed on a
33 MHz 486 running in 386 mode under MS DOS Version 5.00 and Salford
FTN77 Version 2.67. The results of these tests suggested that SA was the
most promising algorithm for our purposes. To confirm this a second set of
tests was undertaken comparing SA and MLSL on other problems arising in
the sensitivity analysis algorithm. These tests were performed on a 66 MHz
486 running under MS DOS Version 6.00 and Salford FTN77 Version 2.67.

Ail test problems have a nonlinear objective function, which may
be nonsmooth, and linear constraints comprising both inequalities and
"non-overlapping" equalities.
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3.1. Test problems 1

Problem statistics are listed in Table 1. Problems of type LI have objective
function max S"= 1 | XJ — WJ \ . Those of type L2 have objective function
max S?_i (XJ — WJ)2, where Wj is a known constant and n, the number
of variables. For Ll problems, the global maximum is known since it can
be computed by integer linear programming (Proll 1997). For L2 problems,
upper bounds can be computed manually. Global maxima for these, of
course, can be computed by one of a number of algorithms (Pardalos and
Rosen 1987), but codes were not available to us.

TABLE 1

Test problem statistics J.

Problem
No.

1
2
3
4
5
6
7
8
9

10
11

No. of
variable

6
6

10
11
13
28
10
11
12
20
28

No. of
constatins

1
3
4
6
5
7
7
7

11
12
7

Objective
type

Ll
Ll
Ll
Ll
Ll
Ll
L2
L2
L2
L2
L2

3.2. Results and Discussion

In Tables 2-7 below, the column headings refer to the following:

Cycles: In MLSL: number of times a sample of N points is drawn;
In SA : number of times factor T is decreased;

Eval: Number of function évaluations;

NLO: Number of local optimisations performed;

DLM: Number of distinct local maximum values discovered;

Time: CPU time in seconds;

Value: Best objective value returned;

Ratio: Ratio of the best objective value returned to the value of the global
optimum, if known, or to an upper bound on the global optimum.

We count as distinct those local maxima whose values differ by more than
1%. Tables 2 and 3 record results for MLSL with parameters N — 100,
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7 — 0.2, a — 4.0. Tables 4 and 5 record results for TOPO with parameters
N = 100, k — 10. Tables 6 and 7 record results for SA with parameters
Lo = 10, xo = 0.9, m0 = 5n, 8 - 0.1, 0 = 0.01, p = 5, a = 1. These
values are largely those suggested by Dekkers and Aarts. In all cases, table
entries represent average performance over 4 independent runs.

The MLSL code was allowed to run for a maximum of 10 cycles,
corresponding to a sample size of 1000 points. The notation p(q) under
Cycles implies that q of the 4 runs were halted before the termination
condition was reached. Table 2 shows the disappointing performance of
MLSL in that, firstly, poor estimâtes of the global maximum were obtained
for problems 1, 2 and 5 and secondly run times were long. This led us
to consider using a composite objective which incorporâtes a measure of
the infeasibility of the sample point with respect to the linear constraints.
Rinnooy Kan and Timmer (1986) use a similar but more formai approach
based on double exact penalty functions. Results using this objective are
given in Table 3 and show some improvement in the robustness of the
algorithm at the expense of run time.

TABLE 2

MLSL: normal objective.

Problera

1
2
3
4
5
6
7
8
9

10
11

Cycles

1(0)
4(0)

10(4)
10(4)
10(4)
10(4)
10(4)
10(4)
6(0)
10(4)
10(4)

Eval

1094
3717

16971
21881
28271
73398
11722
15238
18545
91665
146636

NLO

13
37

142
145
171
199
121
145
87
195
197

DLM

1
2

14
26
25
23
28
28

6
18
13

Time

0.80
2.76

18.46
31.61
45.72

342.10
15.92
22.50
36.97

411.36
761.09

Value

4.87
8.88

44.00
73.92
54.34

106.94
0.12
0.13

225.18
461.20
691.10

Ratio

0.696
0.740
1.000
1.000
0.938
0.948
1.000
1.000
1.000
1.000
1.000

For the topographical method, we chose values for the sample size and
number of nearest neighbours commensurate with those used by Torn and
Viitanen (1994). This allowed their values for threshold distance to be used
as a basis for ours. This was necessary since there is no formula for obtaining
the threshold distance and, in our application, it would not be feasible to
experiment in order to find a "good" threshold distance. It should be noted
that the times reported in Tables 4 and 5 do not include those required for
sample génération. Génération times are substantial and far outweigh solution
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TABLE 3

MLSL: composite objective.

Problem

1
2
3
4
5
6
7
8
9

10
11

Cycles

8(1)
8(1)

10(4)
10(4)
10(4)
10(4)
10(4)
10(4)
6(0)

10(4)
10(4)

Eval

9012
8107

15654
21374
28148
75812
11941
10924
21653
90974
147281

NLO

111
89

143
142
177
200
126
115
102
193
197

DLM

7
7

14
27
22
27
35
35
6

18
13

Time

6.57
5.97

17.80
30.75
45.33

344.19
15.39
13.31
42.44

405.48
758.11

Value

6.50
10.47
44.00
73.92
58.01

106.39
0.12
0.13

225.18
461.17
691.16

Ratio

0.929
0.873
1.000
1.000
0.998
0.943
1.000
1.000
1.000
1.000
1.000

TABLE 4

TOPO: normal objective.

Problem

1
2
3
4
5
6
7
8
9

10
11

Eval

496
816

1317
2215
1722
2844
1093
630
1370
1824
6272

NLO

4
6
8

10
8
7
7
4
5
4
8

DLM

1
1
5
5
6
5
5
3
4
3
5

Time

0.79
1.05
1.93
3.69
3.06

16.68
1.99
1.47
3.77
8.46

40.15

Value

4.86
8.86

40.00
73.92
49.22

101.37
0.12
0.12

225.05
461.19
673.18

Ratio

0.694
0.738
0.909
1.000
0.847
0.899
1.000
0.953
1.000
1.000
0.974

times, e.g. generating a sample of 100 points with a threshold distance of
1.750 for problem 10 required generating over 600 000 points and took
over 300 secs. Given this load, we followed Torn and Viitanen's suggestion
to sample from a unit hypercube, mapping resulting points onto the search
space. This meant that we could use the same sample, for example, for
problems 3 and 7 despite the fact that they référence différent hypercubes.
Comparison of Tables 4 and 5 shows that use of the composite objective did
not bring the same benefits as for MLSL.

Tables 6 and 7 show that there is no strong effect on the SA process in
starting from a point determined by a local optimisation, either in terms of
value achieved or run time.

The results reported in Tables 2 through 7 are summarised in Figures 1
and 2. They show that SA, generally, provides a better estimate of the global
optimum than both MLSL and TOPO. It also runs much faster than MLSL.
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TABLE 5

TOPO: composite objective.

193

Problem

1
2
3
4
5
6
7
8
9

10
11

Eval

1059
705
917

1051
1663
3059

577
842

1088
2244
7055

NLO

10
6
6
6
8
9
4
6
4
5
9

DLM

5
4
4
5
8
8
4
5
3
4
5

Time

1.30
0.99
1.61
2.22
3.13

15.16
1.25
1.94

13.03
10.20
45.30

Value

6.50
12.00
44.00
72.82
55.62
95.31

0.11
0.12

225.05
461.19
673.18

Ratio

0.929
1.000
1.000
0.985
0.957
0.845
0.875
0.953
1.000
1.000
0.974

I
§

0.9 -

1 '

j;

1 1 1 1 1 ( 1

v v "'x

MLSL Table 2 -©—
MLSL Table 3 -+--
TOPO Table 4 - o -
TOPO Table 5 -x

SA Table 6 -*~-
„,.., ̂  SA Table 7 ÎK- • -

-

2 3 4 5 6 7 8 9 10 11
Problem

Figure 1. - Robustness comparison.

This is reinforced by the fact that, in most cases, the MLSL code was halted
with the termination condition far from satisfied. The values achieved by SA
suggest that there is little potential for the additional computational cost in
allowing MLSL to run to termination to be offset against better solutions.
Unsurprisingly, TOPO is the fastest of the three methods since the work
required is simply to compare function values at a small number of points
and perforai a limited number of local optimisations. This speed is achieved
at the expense of robustness. Its robustness could, in principle, be improved
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eu

F

CL
U

MLSLTable2 -«
MLSL Table 3 --t
TOPOTabfe4 -s
TOPO Table 5 x

SA Table 6
SA Table 7 -*•

10 113 4 5 6 7 8 9
Problem

Figure 2. - Time comparison.

by choosing a smaller value for k. However experiments suggest that run
time may rapidly increase. Clearly the lack of robustness of TOPO could
be due to using the mapped sample. However, given the very substantial
overhead in generating a sample directly, this is the only manner in which
TOPO could be used in our application.

3.3. The problems 2

Problem statistics are listed in Table 8. Problems of type D have
objective function min (ipj(x) - ipi(x)) where if)j{x) is a bilinear évaluation
function (Proll et al 1993). They arise in checking whether alternative
i dominâtes alternative j . Problems of type P have objective function
min max{^(a;) - i/>*(x) : j ' ^ *} and arise in checking whether alterna-
tive j is potentially optimal. Problems of type C have objective function
min d(x) -p* min{0, %j)j{x) - ij)*{x)}. These problems arise in finding
the nearest competitor of the currently optimal alternative, *.

Table 9 confirms the superiority of SA over MLSL in terms of time.
The estimâtes of the global minimum obtained by these two methods do
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TABLE 6
Initial point from local optimiser.

195

Problem

1
2
3
4
5
6
7
8
9

10
11

Cycles

46
52
56
47
66
56
95
98
45
91
74

Eval

1653
1767
3010
2960
4950
9015
5007
5707
2932
9514

11108

NLO

3
2
1
2
4
2
2
3
1
1
1

Time

0.97
1.16
2.81
3.17
5.42

24.76
3.80
4.53
3.26

14.58
22.95

Value

6.88
12.00
44.00
73.92
57.93

107.83
0.12
0.12

225.05
459.31
691.16

Ratio

0.982
1.000
1.000
1.000
0.996
0.956
1.000
1.000
1.000
0.996
1.000

TABLE 7

SA: initial point supplied.

Problem

1
2
3
4
5
6
7
8
9

10
11

Cycles

42
26
54
30
40
20
88
74

7
68
23

Eval

1375
947

3295
2381
4045
6202
4443
4486

852
9140
7025

NLO

2
3
7
5
4

11
4
4
2

31
13

Time

0.76
0.62
3.20
2.82
4.73

23.29
3.84
3.75
1.18

14.72
23.66

Value

6.88
12.00
44.00
73.92
58.06

102.42
0.12
0.12

28.3
454.78
683.99

Ratio

0.982
1.000
1.000
1.000
0.998
0.910
1.000
0.945
0.969
0.987
0.990

TABLE 8

Test problem statistics 2.

Problem
No.

12
13
14
15
16
17
18
19
20

No. of
variables

14
14
20
12
14
12
14
14
20

No. of
constraints

7
7

11
11
7

11
7
7

11

Objective
type

D
D
D
P
P
C
C
C

c

not differ by more than 1% except in one of the four trials for problem
19 for which MLSL achieved a value of 1.51 against a value of 0.92 for
SA.
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TABLE 9

SA vs. MLSL

Problem

12
13
14
15
16
17
18
19
20

SA time

1.08
1.60
8.43

10.53
6.32
9.93
0.79
5.79

14.29

MLSL time

6.96
9.01

24.13
26.13
48.18
32.38
23.53
82.69
99.06

4. CONCLUSION

Our expérience suggests that SA is robust and fast enough to be an
appropriate tool for global optimisation in our application. This is likely
to be due to the sequential sampling nature of SA which allows us, via
an adaption of the coordinate directions method, to ensure that ail sampled
points are feasible. It has now been incorporated in our sensitivity analysis
package where it has proved reliable. Algorithms such as MLSL and TOPO,
which rely on uniform coverage of the search space, do not yet have a
satisfactory mechanism for handling gênerai constraints. Viitanen and Torn
(1994) have suggested a mechanism for doing so in the topographical method
but this is as yet unsupported by computational évidence and carries a much
larger sampling overhead than the already substantial overhead incurred by
TOPO. Thus it may well be worthwhile to explore whether our expérience
holds in more gênerai contexts.
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