
RAIRO Operations Research
RAIRO Oper. Res. 35 (2001) 127-142

SOLVING THE SIMPLE PLANT LOCATION PROBLEM
BY GENETIC ALGORITHM

Jozef Kratica
1
, Dušan Tošic

2
, Vladimir Filipović

2
and

Ivana Ljubić
3

Communicated by P. Tolla

Abstract. The simple plant location problem (SPLP) is considered
and a genetic algorithm is proposed to solve this problem. By using
the developed algorithm it is possible to solve SPLP with more than
1000 facility sites and customers. Computational results are presented
and compared to dual based algorithms.

Keywords: Simple plant location problem, genetic algorithms, com-
binatorial optimization.

Mathematics Subject Classification. 90B80, 90C27, 90C59.

1. Introduction

1.1. Problem formulation

Consider a set I = {1, . . . ,m} of candidate sites for facility location, and a set
J = {1, . . . , n} of customers. Each facility i ∈ I has a fixed cost fi. Every customer
j ∈ J has a demand bj, and cij is the unit transportation cost from facility i to

Received February, 2000. Accepted February, 2001.

1 University of Belgrade, Serbian Academy of Sciences and Arts, Institute of Mathematics,
Strumicka 92/5, 11 000 Belgrade, Yugoslavia; e-mail: jkratica@matf.bg.ac.yu
2 University of Belgrade, Faculty of Mathematics, Studentski trg 16, 11 000 Belgrade,
Yugoslavia; e-mail: {dtosic|vladaf}@matf.bg.ac.yu
3 Institute for Computer Graphics, Faviritensstasse 9, Vienna, Austria;

e-mail: ivana@ads.tuwien.ac.at
c© EDP Sciences 2001

128 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

customer j. Without a loss of generality we can normalize the customer demands
to bj = 1 [6].

It has to be decided:

– facilities to be established and
– quantities to be supplied from facility i to customer j

such that the total cost (including fixed and variable costs) is minimized.
Mathematically, the SPLP is formulated on the following way:

min
(m∑
i=1

n∑
j=1

cijxij +
m∑
i=1

fiyi

)
(1)

subject to:

m∑
i=1

xij = 1, for every j ∈ J ; (2)

0 ≤ xij ≤ yi and yi ∈ {0, 1}, for every i ∈ I and every j ∈ J ; (3)

where:
xij represents the quantity supplied from facility i to customer j;
yi indicates whether facility i is established (yi = 1) or not (yi = 0).

Let the set of established facilities be E = {i|yi = 1} with cardinality e = |E|.
Although some special cases of the SPLP are solvable in polynomial time

(see [3, 11,17,26]) in general, it is a NP-hard problem [22]. Genetic algorithms are
used to solve some NP-hard problems in [10,20]. The most recent researches show
that combination of GA and local search can be successful in solving NP-hard
problems (see [12,15,24,25]).

1.2. Genetic algorithms

Genetic Algorithms (GAs) are robust and adaptive methods that can be used
to solve search and optimization problems. GAs work with a population of indi-
viduals (usually 10–200), each representing a problem’s possible solution. Each
individual has an assigned fitness value according to the quality of the solution.
The population evolves towards better solutions by means of randomized processes
of selection, crossover, and mutation.

During the forming of a new population, the selection mechanism favors better
fitted individuals to reproduce more often than the worse ones. Crossover allows
the mixing of parental information when it is passed to their descendants. The re-
sult of crossover is a randomized exchange of genetic material between individuals
with the possibility that good solutions can generate even better ones.

Mutation modifies individual’s genetic material with some small probability
pmut. Its role is to restore lost or unexplored genetic material into the population.
Mutation should prevent the premature convergence of the GA to suboptimal

SOLVING THE SIMPLE PLANT 129

Input Data();
Population Init();
while not Finish() do
/* In the following sentence Npop is the number of individuals

in a population and pi is fitness of ith individuals. */
for i := 1 to Npop do pi:=Objective Function(i) endfor;
Fitness Function();
Selection();
Crossover();
Mutation();

endwhile
Output Data();

Figure 1. Simple form of GA.

solutions. The first generation is usually randomly initialized. For detailed infor-
mations about GA see [4].

Informal description leads to the rough outline of a GA given in Figure 1.

1.3. SPLP literature survey

The SPLP is a well-known combinatorial optimization problem, and many ap-
proaches have been proposed for solving it. The problem is also known as unca-
pacitated warehouse location problem or uncapacitated facility location problem.
The presentation of all important contributions relevant to SPLP lies beyond the
scope of this paper. Some important survey articles are [1, 8, 9, 14,16,22]. We are
going to mention only several efficient and well-known methods to solve SPLP.

The Dualoc algorithm by Erlenkotter [13] has been the fastest algorithm for
solving SPLP for a long time. This algorithm is based on a linear programming
dual formation (LP dual) in condensed form that evolved in simple ascent and
adjustment procedure. If ascent and adjustment procedures do not find optimal
solution, Branch-and-Bound (BnB) procedure completes the solution process.

Guignard [18] proposed to strengthen the separable Lagrangean relaxation of
the SPLP by using Benders inequalities generated during a Lagrangean dual ascent
procedure. The coupling that technique with a good primal heuristic could reduce
integrality gap.

In [27] Simao and Thizy presented streamlined dual simplex algorithm designed
on the basis of a covering formulation of the SPLP. Their computational experience
with standard data sets indicates the superiority of dual approaches.

Körkel [21] showed how to modify a primal-dual version of Erlenkotter’s exact
algorithm to get an improved procedure. The computational experience with
large-scale problem instances indicated that speedup to Dualoc is significant
(more than one order of magnitude).

Coon and Cornuejols present a method based upon the exact solution of the
condensed dual of LP relaxation via orthogonal projections in [7].

130 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

Alves and Almeida in [2] have compared the results of four versions of their
simulated annealing algorithm with those of some well-known heuristic methods.
The quality of the simulated annealing solutions is very good, but the computing
time is significantly longer in comparison to the other ones.

In [19] Holmberg used a primal-dual solution approach based on decomposition
principles. He fixed some variables in the primal subproblem and relaxed some
constraints in the dual subproblem. By fixing their Lagrange multipliers, both of
these problems become easier to solve than the original one. The computational
tests showed advantageous in comparison to the dual ascent method of Erlenkotter.

2. GA implementation

Outline of GA implementation for solving SPLP is schematically described in
Figure 2.

Input GA Parameters();
Input SPLP Data();
Population Init();
while not Finish() do

for i := Nelite+1 to Npop do
/* Nelite - number of elite individuals and

string(i) - genetic code of i-th individual */
if Contain(cache memory, string(i)) then
pi:= Get(cache memory, string(i));

else
pi:= Objective Function(i);
Put(cache memory, string(i));

endif
endfor
Fitness Function and Rank Based Selection();
Uniform Crossover();
Simple Mutation();

endwhile
Output Data();

Figure 2. Outline of GA implementation.

2.1. Representation

The binary encoding of facility sites is used for the given problem (SPLP).
Each individual is represented by the binary string, where 1 denotes that particular
facility is established, while 0 shows it is not. For the faster execution an individual
string is allocated in 32-bit words.

SOLVING THE SIMPLE PLANT 131

The array yi (i = 1, 2, . . . , m) is obtained from the individual string. This array
indicates the established facilities. Since the capacity of the facilities has no limit,
if every customer chooses the most suitable facility (with minimal transportation
cost), the total cost is minimal. Note that the procedure for choosing of the
most suitable facility participated only established facilities (yi = 1). Therefore,
the genetic code contains only yi and the value of xij is calculated during the
evaluation of objective value function.

2.2. Objective value function

The choice of the data structure is very important for the fast implementation
of objective value function. Beside transportation cost matrix this implementation
also uses the indexed lists of facility sites. These lists are sorted in nondecreasing
order according to transportation cost for every customer.

In the program’s initialization part, built-in function qsort() produce indexed
lists from transportation cost matrix. The indexed lists require about 50% ad-
ditional memory, but the computation of the objective value function is several
times faster.

Two different methods for computing objective value have been proposed. The
choice of particular method depends on the number of established facilities e.
Threshold is e0 = c · √m, where c is constant from interval [0.4, 0.5]. Its value is
obtained experimentally to achieve the best performance.

If e is large (e > e0), algorithm is looking for the first facility in indexed list
where is yi = 1. Founded established facility i has minimal transportation cost for
given customer j (xij = 1). The choosing procedure is fast because the array y is
dense and only a few steps in searching the indexed list are needed. The number
of steps for every customer is approximate m/e, and overall run-time complexity
is O

(
m+ n · me

)
.

In the case of small number e, previous procedure gives poor results. It is
slow because the array y is sparse and looking for adequate facility (with yi = 1)
in indexed list requires many steps. In that case another strategy is performed:
instead of using indexed lists this procedure uses array of ordinals. The array O
contains only established facilities (Ok = i where yi is k-th occurrence of 1 in the
array y). Looking the most suitable facility for each customer is done by searching
array of ordinals. If Ok is minimum in array O then xij = 1 for i = Ok. Array y
is sparse, so the length of array O is small, which guaranties fast computation.
The construction phase for array O has O(m) time requirement. Nevertheless the
program creates array O only once and uses it n times (once for every customer).
This procedure requires e steps for each customer, so overall run-time complexity
in this case is O(m + n · e).

It is easy to prove that total run-time complexity for objective value function,
in the worst case, is O(m+ n · √m).

132 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

2.3. Selection and generation replacement strategy

Our implementation use rank-based selection as selection operator. This se-
lection method produces better results on SPLP than other selection schemes.
Especially large improvement is shown in comparison between experimental re-
sults for chosen selection and results for pure roulette selection. Those results
concord with the direction in literature (see [4, 29]). The rank decreases linearly
from the best individual rbest = 2.5 to the worst individual rworst = 0.712 by step
of 0.012. The individuals are chosen with chance proportional to its rank, as can
be seen in Figure 3.

QSort(population);
for i:=1 to Npop do

/* fi - fitness of the i-th individual */
if Duplicate(string(i)) then fi := 0
else fi:= rank(i);
endif

endfor
f̄ := Sum Fitnesses(population) / Npop;
for i:= 1 to Nelite do

if fi ≥ f then fi:= fi − f̄
else fi:= 0;
endif

endfor
Roulette Selection By Rank(population);

Figure 3. Fitness function and rank-based selection.

The population size is Npop = 150 individuals. GA is implemented with steady-
state replacement of generations by using elitist strategy. In every generation only
1/3 of population (50 individuals) is replaced and 2/3 of population (Nelite = 100
individuals) remain from the previous generation. So, 50 worst ranked individuals
in the population are replaced by the new ones. These new individuals (1/3
of population) are generated by means of the genetic operators crossover and
mutation. Every elite individual is passed directly into the next generation, giving
one copy of itself. To prevent undeserved domination of elite individuals over the
population their fitness are decreased by formula (4):

fi =

 fi − f̄ , fi > f̄

1 ≤ i ≤ Nelite

0, fi ≤ f̄
(4)

where f̄ = 1
Npop

∑Npop
i=1 fi is average fitness in entire population.

In this implementation duplicate individual strings are discarded, and more
diversity of the population is maintained to avoid premature convergence. Partic-
ular individual is discarded by setting its fitness to zero. Therefore, the duplicate

SOLVING THE SIMPLE PLANT 133

individual strings are not removed physically but their occurrence is discarded in
next generation.

2.4. Crossover and mutation

The uniform crossover introduced by Syswerda in [28] is chosen. Uniform
crossover uses randomly created crossover mask. If crossover mask contains 1
on specific bit position then the offspring’s bit on that position will be copied from
the first parent. Otherwise, if mask contains 0 on that bit position, then offspring’s
bit will be copied from the second parent, as shown in Figure 4. A new crossover
mask is generated for each pair of parents, with punif probability bit equals 1, while
1− punif probability bit equals 0.

Crossover mask 1 0 1 1 0 1
1. parent XXXXXX
2. parent YYYYYY
1. offspring XYXXYX
2. offspring YXYYXY

Figure 4. Uniform crossover.

In our GA implementation, the crossover rate is pcross = 0.85, and probability
of uniform crossover is punif = 0.3. Thus, the crossover is performed for approx-
imately 85% pairs of individuals, and about 30% of bits are exchanged. The
differences in experimental results among crossover schemes (uniform, one-point,
two-point, multi- point) are smaller than differences among selection schemes, but
they are quite visible.

The simple mutation with rate (per bit) pmut = 0.005 is used. To provide faster
execution, the simple mutation operator is performed by using a Gausian distri-
bution. Let Nmut = (Npop − Nelite)∗pmut be an average number of mutations in
population and σ2 = (Npop − Nelite)∗pmut

∗(1 − pmut) a standard deviation. The
number of mutations is generated by a random pick in Gausian (Nmut, σ

2) dis-
tribution. After that, the positions of mutation sites in the population strings
are randomly generated and their number being the same as the number of mu-
tations. Only the muted genes are processed by this method, while the others
are not. The number of muted genes is relatively small in comparison to entire
population. On this way the run-time performance of a simple mutation operator
is improved without changing its nature.

2.5. Parameters

First generation is randomly initialized, because the maximal diversity of the
population is maintained in this way. The experiments have been carried out with
initialization by some heuristics. In this case, fitness of the first generation got

134 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

better, but heuristics produced worse gradient in the fitness function of subsequent
generations and worse overall results.

Maximal number of generations is Ngener = 2000, except in the case of large-
scale test instances MT, where is Ngener = 4000. The finishing criterion is based
on the number of consecutive generations with unchanged best individual. If that
number exceeds value Nrepeat, given in formula (5), execution of GA is stopped.

Nrepeat =

{
2
√
m · n, for instances obtained from ORLIB [5]√
m · n, for generated instance.

(5)

It is not possible to prove optimality of the obtained solution by GA. If the optimal
solution is known in advance, it can be used for error measurement. In the case
when optimal solution is not known in advance, the best-obtained solution by GA
is used for error measurement.

2.6. Improving implementation of genetic algorithm by caching

The run-time performance of GA, in our implementation, is also improved by
caching. The caching technique decreases run-rime of GA and has no influence on
other GA aspects. The caching is used to avoid an attempt to compute the same
objective value. During the first computation, objective values are remembered
and reused later. If an objective value is computed for a particular string and
the same string appears again, the cached values are used to avoid repetition of
computing.

Two conditions are necessary for successful applying of caching GA:

• large evaluation time of objective value function;
• significant frequency of same strings in population over the generations.

SPLP has relatively slow function for computing objective value and fulfills the
first condition.

Although duplicate strings are discarded from population, the steady-state re-
placement of generations with elitist strategy provides appearance of some indi-
viduals in several subsequent generations. On this way the second condition is also
satisfied and caching technique is significant in improving run time performance
for our solution of SPLP.

Simple but effective Least Recently Used (LRU) caching strategy is imple-
mented. The LRU strategy is applied through double hash table – a fast and
powerful way for caching GA. Caching is performed with cache memory size of
5000 individual strings, i.e. approximately 1 MB of main memory. In practice,
for all used SPLP test instances, run-time was significantly improved by caching
GA. For detailed information about caching GA see [23].

SOLVING THE SIMPLE PLANT 135

3. Computational results

3.1. Computer environment and test instances

GA is accomplished by a program written in ANSI C. The whole implementa-
tion is in character mode display; thus it is portable for all platforms (MS-DOS,
UNIX, ...). The program is divided into two parts:
• Kernel of GA, containing common GA functions applicable for various prob-

lems;
• Specific GA functions for SPLP, related to: I/O operations, initialization

and objective value function.
The problem instances 41–134 and A to C (used in this section) are taken from
ORLIB [5]. Parameters of these instances are given in Table 1.

Table 1. Parameters for SPLP instances taken from ORLIB.

3UREOHP�LQVWDQFH 6L]H)LOH�VL]HV

��������������������������� ��u�� ���.%

��������������������������� ��u�� ���.%

����������������������� ��u�� ���.%

$���& ���u���� ����0%

The randomly generated large-scale SPLP instances MO, MP, MQ, MR, MS
and MT are produced by authors. Input parameters for this generator are integers
n, m, bmin, bmax and real numbers cmin, cmax, fmin, fmax. Particular values of those
parameters are given in Table 2.

The customer demands bi are randomly generated from interval [bmin, bmax]
and then members of transportation cost matrix, from interval [cmin, cmax] mul-
tiplied by bi, are generated. After that, the sum Si =

∑n
j=1 cij is computed for

every facility i. The sum Si denotes a cumulative cost of all customer demands
only from given facility. In the final phase, an inverse scaling into the interval
[fmin, fmax] is performed by the following formula:

fi = fmax −
(Si − Smin).(fmax − fmin)

Smax − Smin
· (6)

This corresponds to some real situations, where smaller transportation costs cij
produce higher facility establishing cost fi, and vice versa.

The instances, generated by input parameters (shown in Tab. 2), have a small
number of useless facility sites (facility sites that have no chance to be established),
and a very large number of suboptimal solutions. An implication of that fact is
very difficult solving by dual based and other Branch-and-Bound techniques (see
Tab. 4). In that case, elimination of useless facility sites is not enough, because
there is very large number of suboptimal solutions.

136 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

Table 2. Input parameters for generator.

3UREOHP�LQVWDQFH 6L]H I F E)LOH�VL]HV

02��02� ���u��� �������� ������ ����� ����.%

03��03� ���u��� ��������� ������ ����� ����.%

04��04� ���u��� ��������� ������ ����� ����.%

05��05� ���u��� ��������� ������� ����� ����0%

06��06� ����u���� ���������� ������� ����� ����0%

07��07� ����u���� ���������� ������� ����� �����0%

The testing process is carried out by PC compatible computer AMD 80486DX5
at 133 MHz with 64 MB of memory.

3.2. Experimental results

An effort has been made to compare performances of our GA implementation
directly to the other ones, but the only one available is Erlenkotter’s Dualoc

algorithm described in [13]. We are especially grateful to him for providing his
Dualoc code. Two variants of Dualoc are available:
• full implementation for finding optimal solution and
• reduced heuristic that contains only Dual Ascent and Dual Adjustment phase

without Branch-and-Bound (BnB).
Both approaches are suitable for solving large-scale problem instances. The re-
sults of executing our GA implementation are summarized in Table 3 and can be
compared to results of the other two methods given in Tables 4 and 5.

The columns in Table 3 describe:
• names of SPLP instances;
• number of instances in group and number of executions for each of them;
• average number of generations necessary for finishing GA execution;
• average run-time in seconds;
• quality of solutions, i.e. number of tests with optimal solution (or the best-

obtained solution), and with relative error less than: 0.2%, 1% and over 1%.
The optimal solution is not known for some SPLP instances (MR1, MR2, MS1-
MS5 and MT1-MT5). In that case the best-obtained solution is reported instead
of optimal one. In the Tables 2–4 optimal solutions are noted by Opt, while the
best-obtained solutions are noted with BS.

Since genetic operators: selection, crossover and mutation are undeterministic,
every problem instance should be run multiple times and an average value is
computed.

Tables 4 and 5 show names of problem instances in similar way, as well as
number of runs, average number of Dualoc iterations, run-time in seconds, and
average error of result compared to optimal solution. Note that original version of
Dualoc always produces optimal solution if it finishes its execution regularly. In
some SPLP instances (MS) execution is truncated after some time (about 200 min)

SOLVING THE SIMPLE PLANT 137

Table 3. Results of GA.

,QVWDQFH 1XP��RI

UXQV

$YJ�

JHQHU�

$YJ��WLPH

�V�

2SW�

�%6�

(UU�

�����

(UU�

���

(UU�

!��

���±��� ��u�� ���� ���� ��� � � �

���±���� ��u�� ����� ���� ��� � � �

������� ��u�� ����� ���� ��� �� � �

$�±�& �u�� ����� ���� �� � � �

02 �u�� ����� ���� �� � � �

03 �u�� ����� ����� ��� � � �

04 �u�� ����� ����� ��� � � �

05 �u�� ����� ����� �� � � �

06 �u�� ����� ����� ��� � � �

07 �u�� ����� ������ ��� � � �

Table 4. Results of Dualoc.

,QVWDQFH 1XP��RI
��
UXQV $YJ�

LWHUDWLRQV

$YJ��WLPH

�V�

$YJ��HUURU

���±��� ��u� � ����� 2SW

���±���� ��u� � ����� 2SW

����±���� ��u� � ����� 2SW

$�±�& �u� ����� ������ 2SW

02 �u� ������ ����� 2SW

03 �u� ������� ������ 2SW

04 �u� ������� ������ 2SW

05� � ���������� ������ �����WR�%6

05� � ��������� ������ �����WR�%6

05� � ��������� ������ 2SW

05� � ��������� ������ 2SW

05� � ��������� ������ 2SW

06 �u� ������� ������ �������WR�%6

because it is too long and the obtained results are quite bad. In that case the
Dualoc produces solutions with more than 10% error in related to BS solutions
obtained by GA.

All presented results of Dualoc in Table 4 are obtained through maximum/one-
pass dual improvement. The application is accomplished through the maximum
improvement dual adjustment procedure at the initial (BnB) node and only once
applied at subsequent nodes. The testing of Dualoc, with maximum dual im-
provement at all BnB nodes is also performed, but the obtained results are consid-
erably worse and they are not presented. For detailed description of these variants
of Dualoc see [13] and [21].

138 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

Table 5. Results of Dualoc without BnB.

,QVWDQFH 1XP��RI
��
UXQV $YJ�

LWHUDWLRQV

$YJ�

WLPH��V�

$YJ��HUURU

������� ��u� � ����� 2SW

�������� ��u� � ����� 2SW

��������� ��u� ��� ����� 2SW

$���& �u� ����� ��� ������WR�2SW

02 �u� ����� ����� ������WR�2SW

03 �u� ����� ���� ������WR�2SW

04 �u� ����� ��� ������WR�2SW

05 �u� ����� ����� �������WR�2SW��%6�

06 �u� ����� ����� �������WR�%6

The results of testing for reduced Dualoc version are given in Table 5. This
heuristic contains only Dual Ascent and Dual Adjustment phase, without branch-
ing (BnB) phase. This method has a short run-time, but produces only a subop-
timal solution, just like GA.

For MR problem instances optimal solution is known in some cases (MR3-MR5)
and solution quality, for the reduced version of Dualoc, is calculated according
to it. In other cases (MR1-MR2), the BS solutions obtained by GA are used for
the calculation of solution quality.

Also, the optimal solutions (best-obtained solutions) have not been produced
by GA in every running. Suboptimal solutions are obtained with relative error
smaller than 1%. According to Table 3, the number of appearance of suboptimal
solutions is less than 1/3.

3.3. Comparison of results

As we can see from Tables 3–5, both versions of Dualoc are perfect for in-
stances 41–134. The optimal solutions are obtained only in a few iterations. The
execution time of GA implementation is approximately 80–300 times worse than
Dualoc. This is a result obtained for the problem instances of relatively small
size or with large number of useless facility sites.

For instances A–C, the original Dualoc is still better than GA, but the differ-
ence in run-time is significantly smaller (25.17 vs. 83.1 s). The reduced Dualoc

quickly produces results, but quality of the obtained suboptimal solutions is not
so good. The relative error is large in comparison to optimal solution (5.74%).

For all subsequent instances (MO-MS), the reduced Dualoc gives worse quality
of solutions, with errors of 9.5% to 15.5%. That level of quality is unacceptable
for practical purposes. Because of that the reduced Dualoc is omitted in the
next comparisons. By increasing the instance size, run-time of reduced Dualoc

increases considerably faster than GA run-time.

SOLVING THE SIMPLE PLANT 139

In the case of instances MO-MQ with medium size and a small number of useless
facility sites, the original Dualoc and GA produce optimal solutions, but run-
time of GA is 5–80 times better. Speedup is more than 500 times for MR instances
and we believe that speedup for instances MS and MT increases exponentially with
instance size.

The obtained result might be explained by presenting nature of the GA and
Dualoc.

The Dualoc algorithm performs BnB search and produces the optimal so-
lution having an exponential complexity. The Dualoc algorithm is useful for
the problem instances with relatively small number of suboptimal solutions near
the optimal one. In that case, the useless facility sites are eliminated implicitly and
the search space is reduced only on small number of useful facility sites. For that
reason the solution is obtained very quickly. However, for the problem instances
with a small number of useless facilities and a large number of suboptimal solu-
tions, the search space is very large. Therefore, Dualoc makes small improvement
in every BnB iteration with large overall run-time.

GA is a robust technique for solving NP-hard problems (see [10]) and large
number of suboptimal solutions is a good stepping-stone to reach optimal value.
The individuals of a population quickly obtain near optimal values and by their
recombination the optimal solution is reached. On the contrary, a small number
of near optimal solutions implies a slow producing of individuals near to optimal
values. After a lot of iterations, only few individuals have near-optimal values and
it is difficult to obtain optimal solution by recombination.

Similarly to Körkel’s PDLOC memory requirement, GA implementation is
about 2 times smaller than Dualoc. For example, for 1000× 1000 instances GA
implementation allocated approximately 12 MB memory, but Dualoc allocated
24MB.

3.4. Comparison with the other implementations

The other implementations, except Dualoc, have not been available for direct
performance comparison. Indirectly, we can make some conclusions according to
the accessible information in particular papers.

Quite different techniques for solving SPLP are demonstrated by algorithms
used in [7, 18, 19]. The experimental results presented in these papers are better
than Dualoc (in some cases), but the speedup is small. In the papers [7,18], only
results for SPLP instances with small size (up to 100× 100) are presented.

From [2] one can see that simulated annealing method produces good solutions,
but in run-time significantly longer than the other methods.

Körkel’s PDLOC algorithm, described in [21], is more recent and more sophis-
ticated than Dualoc. This commercial product practically has been unavailable
for us. Adopting the test results shown in [21], we can conclude that PDLOC
generates solutions 10–100 times faster than Dualoc.

140 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

4. Conclusion

A GA implementation for solving simple plant location problem is explored.
During the testing process, experiments are carried out with several variants
of selection and crossover. We conclude that rank-based selection and uniform
crossover provided the best performances. Binary representation of facility sites
provides the successful performances of GA. The objective value function is effi-
ciently implemented and strengthened by caching GA.

Our implementation is especially convenient for SPLP instances with more than
1000 facility locations and customers. This approach is recommended for the large-
scale problem instances with the small number of useless facility sites. For such
instances the other methods for solving SPLP have poor performances, i.e. only
the GA implementation produces qualitative solutions in reasonably short run-
time.

The research presented in this paper can be improved, generalized and extended
in several directions:

• testing of our approach for larger size problem instances (more than 2000
facilities and customers) on powerful computers;
• hybridizing of GA with the other methods for solving SPLP;
• upgrading of used genetic algorithm with ability to verify optimal solution;
• parallelizing of the genetic algorithm for distributed and multiprocessor sys-

tems;
• applying our approach to the other related location problems: p-median,

capacitated facility location, dynamic facility location, multi-product unca-
pacitated facility location and data file location/allocation problems.

Special thanks are due to Donald Erlenkotter, for providing his Dualoc code for perfor-

mance comparison.

References

[1] C.H. Aikens, Facility Location Models for Distribution Planning. European J. Oper. Res.
22 (1985) 263-279.

[2] M.L. Alves and M.T. Almeida, Simulated Annealing Algorithm for the Simple Plant Loca-
tion Problem: A Computational Study. Rev. Invest. 12 (1992).

[3] A.A. Aqeev, V.S. Beresnev, Polynomially Solvable Cases of the Simple Plant Location Prob-
lem, in Proc. of the First Integer Programming and Combinatorial Optimization Confer-
ence, edited by R. Kannan and W.R. Pulleyblank. University of Waterloo Press, ON, Canada
(1990) 1-6.

[4] D. Beasley, D.R. Bull and R.R. Martin, An Overview of Genetic Algorithms. Univ. Com-
puting 15 (1993) 170-181.

SOLVING THE SIMPLE PLANT 141

[5] J.E. Beasley, Obtaining Test Problems via Internet. J. Global Optim. 8 (1996) 429-433,
http://mscmga.ms.ic.ac.uk/info.html

[6] J.E. Beasley, Lagrangean Heuristic for Location Problems. European J. Oper. Res. 65 (1993)
383-399.

[7] A.R. Conn and G. Cornuejols, A Projection Method for the Uncapacitated Facility Location
Problem. Math. Programming 46 (1990) 273-298.

[8] G. Cornuejols, G.L. Nemhauser and L.A. Wolsey, The Uncapacitated Facility Location Prob-
lem, in Discrete Location Theory, edited by P.B. Mirchandani and R.L. Francis. John Wiley
& Sons (1990), Chapter 3, pp. 120-171.

[9] P.M. Dearing, Location Problems. Oper. Res. Lett. 4 (1985) 95-98.
[10] K.E. De Jong and W.M. Spears, Using Genetic Algorithms to Solve NP-Complete Problems,

in Proc. of the Third International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA (1989) 124-132.

[11] C. De Simone and C. Mannino, Easy Instances of the Plant Location Problem, Technical
Report R-427. Gennaio, University of Roma, Italy (1996).

[12] R. Dorne and J.K. Hao, A New Genetic Local Search Algorithm for Graph Coloring, in Proc.
of the 5th Conference on Parallel Problem Solving from Nature – PPSN V. Springer-Verlag,
Lecture Notes in Comput. Sci. 1498 (1998) 745-754.

[13] D. Erlenkotter, A Dual-Based Procedure for Uncapacitated Facility Location. Oper. Res.
26 (1978) 992-1009.

[14] R.L. Francis, L.F. McGinnis and J.A. White, Locational Analysis. European J. Oper. Res.
12 (1983) 220-252.

[15] B. Freisleben and P. Merz, New Genetic Local Search Operators for the Traveling Salesman
Problem, in Proc. of the 4th Conference on Parallel Problem Solving from Nature – PPSN
IV. Springer-Verlag Lecture Notes in Comput. Sci. 1141 (1996) 890-899.

[16] L.L. Gao, E. Robinson and Jr. Powell, Uncapacitated Facility Location: General Solution
Procedure and Computational Experience. European J. Oper. Res. 76 (1994) 410-427.

[17] V.P. Grishukhin, On Polynomial Solvability Conditions for the Simplest Plant Location
Problem, in Selected topics in discrete mathematics, edited by A.K. Kelmans and S. Ivanov.
American Mathematical Society, Providence, RI (1994) 37-46.

[18] M. Guignard, A Lagrangean Dual Ascent Algorithm for Simple Plant Location Problems.
European J. Oper. Res. 35 (1988) 193-200.

[19] K. Holmberg, Experiments with Primal-Dual Decomposition and Subgradient Methods for
the Uncapacitated Facility Location Problem, Research Report LiTH-MAT/OPT-WP-1995-
08, Optimization. Department of Mathematics, Linkoping Institute of Technology, Sweden
(1995).

[20] S. Khuri, T. Back and J. Heitkotter, An Evolutionary Approach to Combinatorial Opti-
mization Problems, in Proc. of CSC’94. Phoenix, Arizona (1994).

[21] M. Koerkel, On the Exact Solution of Large-Scale Simple Plant Location Problems. European
J. Oper. Res. 39 (1989) 157-173.

[22] J. Krarup and P.M. Pruzan, The Simple Plant Location Problem: Survey and Synthesis.
European J. Oper. Res. 12 (1983) 36-81.

[23] J. Kratica, Improving Performances of the Genetic Algorithm by Caching. Comput. Artificial
Intelligence 18 (1999) 271-283.

[24] P. Merz and B. Freisleben, A Genetic Local Search Approach to the Quadratic Assignment
Problem, in Proc. of the Seventh International Conference on Genetic Algorithms. Morgan
Kaufmann (1997) 465-472.

[25] P. Merz and B. Freisleben, Genetic Local Search for the TSP: New Results, in Proc. of
the 1997 IEEE International Conference on Evolutionary Computation. IEEE Press (1997)
159-164.

[26] C. Ryu and M. Guignard, An Exact Algorithm for the Simple Plant Location Problem with
an Aggregate Capacity Constraint, TIMS/ORSA Meeting. Orlando, FL (1992) 92-04-09.

[27] H.P. Simao and J.M. Thizy, A Dual Simplex Algorithm for the Canonical Representation
of the Uncapacitated Facility Location Problem. Oper. Res. Lett. 8 (1989) 279-286.

142 J. KRATICA, D. TOŠIC, V. FILIPOVIĆ AND I. LJUBIĆ

[28] G. Syswerda, Uniform Crossover in Genetic Algorithms, in Proc. of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA (1989) 2-9.

[29] D. Whitley, The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation
of Reproductive Trials is Best, in Proc. of the Third International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo, CA (1989) 116-123.

to access this journal online:
www.edpsciences.org

