RAIRO Operations Research

RAIRO Oper. Res. 35 (2001) 395-399

A MODIFIED ALGORITHM FOR THE STRICT FEASIBILITY PROBLEM

D. Benterki¹ and B. Merikhi¹

Communicated by Jean-Pierre Crouzeix

Abstract. In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations.

Keywords: Strict feasibility, interior point methods, Ye–Lustig algorithm.

1. INTRODUCTION

This paper is concerned with the problem of finding $x \in \mathbb{R}^n$ such that

$$x > 0$$
 and $Ax = b$ (F)

where A is a $m \times n$ real matrix of rank $m, b \in \mathbb{R}^m$ and 0 < m < n.

This problem, called a *strict feasibility problem*, occurs in many optimization problems in linear or quadratic programming. Such problems are of type

Minimize
$$f(x)$$
 subject to $x \in S = \{x \in \mathbb{R}^n : x \ge 0, Ax = b\}$ (P)

Let us denote by \widetilde{S} the following subset:

$$\overline{S} = \{ x \in \mathbb{R}^n : x > 0, \ Ax = b \}.$$

© EDP Sciences 2002

Received September, 2001.

 $^{^1}$ Département de Mathématiques, Faculté des Sciences, Université Ferhat Abbas, Sétif, 19000 Algérie.

Interior point methods for solving (P) start from some arbitrary initial point $x^0 \in \widetilde{S}$ and build a sequence $\{x^k\} \subset \widetilde{S}$ expected to converge to some optimal solution x^* of (P). Thus, the first step in interior point methods consists in finding an initial point x^0 in a efficient way. To do that, it is usual to introduce an artificial variable λ and to consider the linear programming problem

$$\operatorname{Minimize}_{x,\lambda} \{ \lambda : Ax + \lambda(b - Aa^0) = b, x \ge 0, \lambda \ge 0 \}$$
 (*LF*)

where a^0 is a arbitrary fixed point in the positive orthant of \mathbb{R}^n . It is noticed that x^* is a solution of the feasibility problem (F) if and only if $(x^*, 0)$ is an optimal solution of (LF) with $x^* > 0$.

In fact, numerical algorithms provide only approximate optimal solutions for an optimization problem. In our case, an approximate solution of (LF) can be obtained via a classical interior method as for instance the Ye–Lustig algorithm that we described below. But before, we precise the notation used in this algorithm: $\varepsilon > 0$ corresponds to the precision of the approximation, $r = \frac{1}{\sqrt{(n+1)(n+2)}}$, $c = (0, 0, \dots, 0, 1)^t \in \mathbb{R}^{n+1}, e_{n+2} = (1, 1, \dots, 1)^t \in \mathbb{R}^{n+2}, \tilde{x} = (x, \lambda)^t \in \mathbb{R}^{n+1}$ and $B = [A, b - Aa^0]$ is a $m \times (n+1)$ matrix.

2. The original algorithm and its modification

Let us describe the original algorithm:

The Ye–Lustig algorithm [3]

- a) Initialization: start with $x^0 = a^0$, $\lambda^0 = 1$, $\tilde{x}^0 = (x^0, \lambda^0)^t$ and k = 0; If $||Ax^0 - b|| \le \varepsilon$ Stop: x^0 is an ε -approximate solution, If not go to b).
- b) If $\lambda^k \leq \varepsilon$ Stop: x^k is an ε -approximate solution, If not go to c).
- c) Set $D^k = \text{diag}(\tilde{x}^k)$ and
 - Compute the projection p^k of the vector $(D^k c, -c^t \tilde{x}^k)^t \in \mathbb{R}^{n+2}$ on the kernel of the $m \times (n+2)$ matrix $B^k = [BD^k, -b],$
 - Take $y^{k+1} = \frac{e_{n+2}}{n+2} \alpha^k r \frac{p^k}{\|p^k\|}$, where α^k is obtained by a line search, Take $\tilde{x}^{k+1} = (x^{k+1}, \lambda^{k+1})^t = (y^{k+1}_{n+2})^{-1} D^k y^{k+1} [n+1],$
- d) do k = k + 1 and go back to b).

We propose a slight modification of this algorithm by modifying the stopping criteria.

396

397

The modified algorithm

- a') Initialization: start with x⁰ = a⁰, λ⁰ = 1, and k = 0;
 If ||Ax⁰ b|| ≤ ε Stop: x⁰ is an ε-approximate solution.
 If not compute the solution u⁰ of the linear system
 AA^tu⁰ = λ⁰(b Aa⁰).
- b') If λ^k ≤ ε Stop: x^k is an ε-approximate solution.
 If not
 - Take $u^k = \lambda^k u^0$,
 - Take $z^k = -\operatorname{diag}[(x^k)]^{-1}A^t u^k$,
 - If $\max |z^k|_i < 1$ Stop: $x^k + A^t u^k$ is an ε -approximate solution. If not go to c')
- c') is identical to c) of the original algorithm.
- d') do k = k + 1 and go back to b').

The computation of the vector u^0 occurs once only, it can be performed by a Cholesky method. It remains to prove the validity of the new stopping criteria $\max |z^k|_i < 1$. This is done in the following proposition.

Proposition 2.1. If $\max |z^k|_i < 1$ then $x^k + A^t u^k > 0$ and $A(x^k + A^t u^k) = b$.

Proof. 1) Notice that $-\operatorname{diag}(x^k)z^k = A^t u^k$, then $x^k + A^t u^k = x^k - \operatorname{diag}(x^k)z^k = \operatorname{diag}(x^k)(e_n - z^k) > 0$ because $x^k > 0$ and $|z^k|_i < 1$ for all i.

2) Since
$$(x^k, \lambda^k)^t$$
 is a feasible solution of (LF) then $A(x^k + A^t u^k) = Ax^k + AA^t u^k = b - \lambda^k (b - Aa^0) + \lambda^k AA^t u^0 = b - \lambda^k (b - Aa^0) + \lambda^k \lambda^0 (b - Aa^0) = b.$

This modification brings a significant improvement in the number of iterations with only a very small increasing in the cost per iteration. We illustrate that by a few examples.

3. Examples

In this examples ε has been taken equal to 10^{-3} or 10^{-6} according to the case.

3.1. Some examples

The following examples are taken form the literature see for instance [1, 4]. In particular, Example 7 is called the Hitac problem.

D. BENTERKI AND B. MERIKHI

example	taille	Nbr of iterations	Nbr of iterations
	m imes n	Ye–Lustig	modified algorithm
1	3×5	4	1
2	3×6	3	1
3	5×11	5	4
4	6×12	3	1
5	11×25	4	3
6	16×27	6	5
7	11×28	7	6

3.2. Cube example

$$\begin{split} n &= 2m, \, A[i,j] = 0 \quad \text{if} \quad i \neq j \quad or \quad (i+1) \neq j \\ A[i,i] &= A[i,i+m] = 1, b[i] = 2, \, \text{for} \, i, j = 1 \cdots m. \end{split}$$

Dimension	Nbr of iterations	Nbr of iterations
m imes n	Ye-Lustig	Modified algorithm
50×100	3	1
100×200	3	1
150×300	3	1
200×400	3	1

3.3. Hilbert example

$$n = 2m, A[i, j] = \frac{1}{i+j}, A[i, i+m] = 1,$$

$$b[i] = \sum_{j=1}^{m} \frac{1}{i+j}, \text{ for } i, j = 1 \cdots m.$$

Dimension	Nbr of iterations	Nbr of iterations
m imes n	Ye-Lustig	Modified algorithm
50×100	3	1
100×200	3	1
150×300	3	1
200×400	3	1

398

References

- D. Benterki, Étude des performances de l'algorithme de Karmarkar pour la programmation linéaire. Thèse de Magister, Département de Mathématiques, Université de Annaba, Algérie (1992).
- [2] J.C. Culioli, Introduction à l'optimisation. Édition Marketing, Ellipses, Paris (1994).
- [3] I.J. Lustig, A pratical approach to Karmarkar's algorithm. Technical report sol 85-5, Department of Operations Research Stanford University, Stanford, California.
- [4] A. Keraghel, Étude adaptative et comparative des principales variantes dans l'algorithme de Karmarkar, Thèse de Doctorat de mathématiques appliquées. Université Joseph Fourier, Grenoble, France (1989).
- [5] D.F. Shanno and R.E. Marsten, A reduced-gradient variant of Karmarkar's algorithm and null-space projections. J. Optim. Theory Appl. 57 (1988) 383-397.
- [6] S.J. Wright, Primal-dual interior point method. SIAM, Philadelphia, PA (1997).

to access this journal online: www.edpsciences.org