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A MODIFIED ALGORITHM FOR THE STRICT
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Abstract. In this note, we present a slight modification of an algo-

rithm for the strict feasibility problem. This modification reduces the

number of iterations.
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1. Introduction

This paper is concerned with the problem of finding x ∈ Rn such that

x > 0 and Ax = b (F )

where A is a m× n real matrix of rank m, b ∈ Rm and 0 < m < n.
This problem, called a strict feasibility problem, occurs in many optimization

problems in linear or quadratic programming. Such problems are of type

Minimize f(x) subject to x ∈ S = {x ∈ Rn : x ≥ 0, Ax = b}· (P )

Let us denote by S̃ the following subset:

S̃ = {x ∈ Rn : x > 0, Ax = b}·
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Interior point methods for solving (P ) start from some arbitrary initial point
x0 ∈ S̃ and build a sequence {xk} ⊂ S̃ expected to converge to some optimal
solution x∗ of (P ). Thus, the first step in interior point methods consists in
finding an initial point x0 in a efficient way. To do that, it is usual to introduce
an artificial variable λ and to consider the linear programming problem

Minimize x,λ {λ : Ax+ λ(b−Aa0) = b, x ≥ 0, λ ≥ 0} (LF )

where a0 is a arbitrary fixed point in the positive orthant of Rn. It is noticed
that x∗ is a solution of the feasibility problem (F ) if and only if (x∗, 0) is an
optimal solution of (LF ) with x∗ > 0.

In fact, numerical algorithms provide only approximate optimal solutions for
an optimization problem. In our case, an approximate solution of (LF ) can be
obtained via a classical interior method as for instance the Ye–Lustig algorithm
that we described below. But before, we precise the notation used in this algo-
rithm: ε > 0 corresponds to the precision of the approximation, r = 1√

(n+1)(n+2)
,

c = (0, 0, · · · , 0, 1)t ∈ Rn+1, en+2 = (1, 1, · · · , 1)t ∈ Rn+2, x̃ = (x, λ)t ∈ Rn+1 and
B = [A, b−Aa0 ] is a m× (n+ 1) matrix.

2. The original algorithm and its modification

Let us describe the original algorithm:

The Ye–Lustig algorithm [3]

• a) Initialization: start with x0 = a0, λ0 = 1, x̃0 = (x0, λ0)t and k = 0;
If ‖Ax0 − b‖ ≤ ε Stop: x0 is an ε-approximate solution,
If not go to b).
• b) If λk ≤ ε Stop: xk is an ε-approximate solution,

If not go to c).
• c) Set Dk = diag(x̃k) and

– Compute the projection pk of the vector (Dkc,−ctx̃k)t ∈ Rn+2 on the
kernel of the m× (n+ 2) matrix Bk = [BDk,−b],

– Take yk+1 = en+2
n+2 − αkr

pk

‖pk‖ , where αk is obtained by a line search,

– Take x̃k+1 = (xk+1, λk+1)t = (yk+1
n+2)−1Dkyk+1[n+ 1],

• d) do k = k + 1 and go back to b).

We propose a slight modification of this algorithm by modifying the stopping
criteria.
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The modified algorithm

• a’) Initialization: start with x0 = a0, λ0 = 1, and k = 0;
If ‖Ax0 − b‖ ≤ ε Stop: x0 is an ε-approximate solution.
If not compute the solution u0 of the linear system
AAtu0 = λ0(b−Aa0).
• b’) If λk ≤ ε Stop: xk is an ε-approximate solution.

If not
– Take uk = λku0,
– Take zk = −diag[(xk)]−1Atuk,
– If max|zk|i < 1 Stop: xk +Atuk is an ε-approximate solution.

If not go to c’)
• c’) is identical to c) of the original algorithm.
• d’) do k = k + 1 and go back to b’).

The computation of the vector u0 occurs once only, it can be performed by a
Cholesky method. It remains to prove the validity of the new stopping criteria
max|zk|i < 1. This is done in the following proposition.

Proposition 2.1. If max|zk|i < 1 then xk +Atuk > 0 and A(xk +Atuk) = b.

Proof. 1) Notice that −diag(xk)zk = Atuk, then xk + Atuk = xk − diag(xk)zk =
diag(xk)(en − zk) > 0 because xk > 0 and |zk|i < 1 for all i.

2) Since (xk, λk)t is a feasible solution of (LF ) then A(xk+Atuk) = Axk+AAtuk =
b− λk(b−Aa0) + λkAAtu0 = b− λk(b−Aa0) + λkλ0(b−Aa0) = b. �

This modification brings a significant improvement in the number of iterations
with only a very small increasing in the cost per iteration. We illustrate that by
a few examples.

3. Examples

In this examples ε has been taken equal to 10−3 or 10−6 according to the case.

3.1. Some examples

The following examples are taken form the literature see for instance [1, 4]. In
particular, Example 7 is called the Hitac problem.
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example taille Nbr of iterations Nbr of iterations
m× n Ye–Lustig modified algorithm

1 3× 5 4 1
2 3× 6 3 1
3 5× 11 5 4
4 6× 12 3 1
5 11× 25 4 3
6 16× 27 6 5
7 11× 28 7 6

3.2. Cube example

n = 2m, A[i, j] = 0 if i 6= j or (i+ 1) 6= j

A[i, i] = A[i, i+m] = 1, b[i] = 2, for i, j = 1 · · ·m.

Dimension Nbr of iterations Nbr of iterations
m× n Ye–Lustig Modified algorithm

50× 100 3 1
100× 200 3 1
150× 300 3 1
200× 400 3 1

3.3. Hilbert example

n = 2m, A[i, j] = 1
i+j , A[i, i+m] = 1,

b[i] =
∑m
j=1

1
i+j , for i, j = 1 · · ·m.

Dimension Nbr of iterations Nbr of iterations
m× n Ye–Lustig Modified algorithm

50× 100 3 1
100× 200 3 1
150× 300 3 1
200× 400 3 1
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