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A MODIFIED ALGORITHM FOR THE STRICT
FEASIBILITY PROBLEM

D. BENTERKI! AND B. MERIKHI!
Communicated by Jean-Pierre Crouzeix

Abstract. In this note, we present a slight modification of an algo-
rithm for the strict feasibility problem. This modification reduces the
number of iterations.
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1. INTRODUCTION
This paper is concerned with the problem of finding = € R™ such that
x>0 and Az =0 (F)

where A is a m X n real matrix of rank m, b € R™ and 0 < m < n.
This problem, called a strict feasibility problem, occurs in many optimization
problems in linear or quadratic programming. Such problems are of type

Minimize f(z) subject toz € S={zeR": x>0, Az = b}- (P)

Let us denote by S the following subset:

S={zeR": >0, Az = b}
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Interior point methods for solving (P) start from some arbitrary initial point
2% € S and build a sequence {a*} C S expected to converge to some optimal
solution x* of (P). Thus, the first step in interior point methods consists in
finding an initial point 2° in a efficient way. To do that, it is usual to introduce

an artificial variable A and to consider the linear programming problem

Minimize , x {\ : Az + (b — Aa®) = b, z >0, A > 0} (LF)

Y is a arbitrary fixed point in the positive orthant of R™. It is noticed

where a
that «* is a solution of the feasibility problem (F') if and only if (z*,0) is an
optimal solution of (LF) with z* > 0.

In fact, numerical algorithms provide only approximate optimal solutions for
an optimization problem. In our case, an approximate solution of (LF') can be
obtained wia a classical interior method as for instance the Ye-Lustig algorithm

that we described below. But before, we precise the notation used in this algo-
-1

(n+1)(n+2)’
c¢=(0,0,---,0, l)t € R+ en+a = (1,1, ’1)75 e R"2 F = (.Z‘,)\)t e Rt and

B=[Ab— Aa’]is a m x (n + 1) matrix.

rithm: & > 0 corresponds to the precision of the approximation, r =

2. THE ORIGINAL ALGORITHM AND ITS MODIFICATION

Let us describe the original algorithm:
The Ye-Lustig algorithm [3]

e a) Initialization: start with 2° = a" A\ =1, 7% = (20, \%)! and k = 0;
If |Az® — b|| < e Stop: 2° is an e-approximate solution,
If not go to b).
e b) If \¥ < ¢ Stop: ¥ is an e-approximate solution,
If not go to ¢).
e ¢) Set D¥ = diag(*) and
— Compute the projection p¥ of the vector (DFc, —ctz¥)t € R"*2 on the
kernel of the m x (n + 2) matrix B¥ = [BD¥, —b],
— Take y*+1 = e akrm, where o is obtained by a line search,
— Take 3F+! = (gh+1 \RHL)E = (yFT1) =1 DRyk+1n 4 1),
e d) do k =k + 1 and go back to b).

We propose a slight modification of this algorithm by modifying the stopping
criteria.
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The modified algorithm

e 2’) Initialization: start with 20 = a°, A\’ = 1, and k = 0;
If |Az° — b|| <& Stop: z° is an e-approximate solution.
If not compute the solution u® of the linear system
AAWO = \0(b — Ad).

e b)) If \* <¢ Stop: z" is an e-approximate solution.

If not
— Take uF = M\eu?,
— Take zF = —diag[(2*)] "t Atu*,
— If max|z¥|; <1 Stop: z¥ + A'u¥ is an e-approximate solution.
If not go to ¢’)
e ¢’) is identical to ¢) of the original algorithm.
e d’) do k =k + 1 and go back to b’).

0

The computation of the vector u” occurs once only, it can be performed by a

Cholesky method. It remains to prove the validity of the new stopping criteria

max|z¥|; < 1. This is done in the following proposition.

Proposition 2.1. If max|z*|; < 1 then 2% + Au* > 0 and A(z* + AtuF) = b.

Proof. 1) Notice that —diag(z*)z% = A'u*, then 2% + Atu* = 2% — diag(a¥)2F =
diag(z")(e,, — 2%) > 0 because z* > 0 and |2*|; < 1 for all i.

2) Since (2%, A\¥)! is a feasible solution of (LF) then A(z*+AtuF) = Az*+ AA'WF =
b— M(b— Aa®) + M AATGO = b — A< (b — Aa®) + N*AO(b — Aa®) = b. 0

This modification brings a significant improvement in the number of iterations
with only a very small increasing in the cost per iteration. We illustrate that by
a few examples.

3. EXAMPLES

In this examples € has been taken equal to 1073 or 107% according to the case.

3.1. SOME EXAMPLES

The following examples are taken form the literature see for instance [1,4]. In
particular, Example 7 is called the Hitac problem.
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example | taille | Nbr of iterations | Nbr of iterations
m X n Ye—Lustig modified algorithm
1 3x5b 4 1
2 3x6 3 1
3 5 x 11 5 4
4 6 x 12 3 1
5 11 x 25 4 3
6 16 x 27 6 5
7 11 x 28 7 6

3.2. CUBE EXAMPLE

n=2m, Ali,j]=0 if

i#j or (i+1)#j

Ali,i] = Aliyi+m] =1,b[¢) =2, for i,j=1---m.

Dimension | Nbr of iterations | Nbr of iterations
mXn Ye—Lustig Modified algorithm
50 x 100 3 1
100 x 200 3 1
150 x 300 3 1
200 x 400 3 1
3.3. HILBERT EXAMPLE
n=2m, Ali,j] = ﬁvA[LaL‘i’m] =1,

bi] =", =, fori,j=1---m.

Jj=1 i+j5°

Dimension | Nbr of iterations | Nbr of iterations
mXn Ye—Lustig Modified algorithm
50 x 100 3 1
100 x 200 3 1
150 x 300 3 1

200 x 400 3 1
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