Coloration de graphes : fondements et applications
RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 1, pp. 29-66.

Les modèles classiques de coloration doivent leur notoriété en grande partie à leurs applications à des problèmes de type emploi du temps ; nous présentons les concepts de base des colorations ainsi qu'une série de variations et de généralisations motivées par divers problèmes d'ordonnancement dont les élaborations d'horaires scolaires. Quelques algorithmes exacts et heuristiques seront présentés et nous esquisserons des méthodes basées sur la recherche Tabou pour trouver des solutions approchées pour des problèmes de grande taille. Enfin nous mentionnons l'application des colorations à la confection de calendriers de ligues de sport et à des problèmes de transferts de fichiers informatiques. Ce texte est une version étendue de [37].

The classical colouring models are well known thanks in large part to their applications to scheduling type problems; we describe the basic concepts of colourings together with a number of variations and generalisations arising from scheduling problems such as the creation of school schedules. Some exact and heuristic algorithms will be presented, and we will sketch solution methods based on tabu search to find approximate solutions to large problems. Finally we will also mention the use of colourings for creating schedules in sports leagues and for computer file transfer problems. This paper is an extended version of [37].

@article{RO_2003__37_1_29_0,
     author = {Werra, Dominique de and Kobler, Daniel},
     title = {Coloration de graphes : fondements et applications},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {29--66},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {1},
     year = {2003},
     doi = {10.1051/ro:2003013},
     zbl = {1062.90026},
     mrnumber = {1999921},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1051/ro:2003013/}
}
Werra, Dominique de; Kobler, Daniel. Coloration de graphes : fondements et applications. RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 1, pp. 29-66. doi : 10.1051/ro:2003013. http://archive.numdam.org/articles/10.1051/ro:2003013/

[1] N. Alon et M. Tarsi, Colorings and orientations of graphs. Combinatorica 12 (1992) 125-134. | MR 1179249 | Zbl 0756.05049

[2] M. Bellare, O. Goldreich et M. Sudan, Free bits, PCPs and non-approximability - towards tight results. SIAM J. Comput. 27 (1998) 804-915. | Zbl 0912.68041

[3] C. Berge, Graphes. Gauthier-Villars, Paris (1983). | MR 722294 | Zbl 0531.05031

[4] C. Berge, Hypergraphes. Gauthier-Villars, Paris (1987). | MR 898652 | Zbl 0623.05001

[5] C. Berge et V. Chvátal, Topics on Perfect Graphs. Ann. Discrete Math. 21 (1984). | MR 778744 | Zbl 0546.00006

[6] M. Biró, M. Hujter et Zs. Tuza, Precoloring extension. I. Interval graphs. Discrete Math. 100 (1992) 267-279. | MR 1172354 | Zbl 0766.05026

[7] H.L. Bodlaender, K. Jansen et G. Woeginger, Scheduling with incompatible jobs. Discrete Appl. Math. 55 (1994) 219-232. | MR 1308879 | Zbl 0822.68011

[8] V. Chvátal, Perfectly ordered graphs, in Topics on Perfect Graphs. North Holland Math. Stud. 88, Annals Discrete Math. 21 (1984) 63-65. | MR 778750 | Zbl 0559.05055

[9] E.G. Coffman Jr., M.G. Garey, D.S. Johnson et A.S. Lapaugh, Scheduling file transfers. SIAM J. Comput. 14 (1985) 744-780. | MR 795943 | Zbl 0604.68039

[10] O. Coudert, Exact Coloring of Real-Life Graphs is Easy, in Proc. of 34th ACM/IEEE Design Automation Conf. ACM Press, New York (1997) 121-126.

[11] N. Dubois et D. De Werra, EPCOT: An Efficient Procedure for Coloring Optimally with Tabu Search. Comput. Math. Appl. 25 (1993) 35-45. | MR 1213528 | Zbl 0798.68128

[12] K. Easton, G. Nemhauser et M. Trick, The traveling tournament problem: description and benchmarks. GSIA, Carnegie Mellon University (2002). | Zbl 1067.68627

[13] C. Fleurent et J.A. Ferland, Genetic and Hybrid Algorithms for Graph Coloring, édité par G. Laporte et I.H. Osman (éds). Metaheuristics in Combinatorial Optimization, Ann. Oper. Res. 63 (1996) 437-461. | Zbl 0851.90095

[14] M.G. Garey et D.S. Johnson, The complexity of near-optimal graph coloring. J. ACM 23 (1976) 43-49. | MR 426496 | Zbl 0322.05111

[15] M.G. Garey, D.S. Johnson et L. Stockmeyer, Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1 (1976) 237-267. | MR 411240 | Zbl 0338.05120

[16] F. Glover et M. Laguna, Tabu Search. Kluwer Academic Publ. (1997). | MR 1665424 | Zbl 0930.90083

[17] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1984). | Zbl 0541.05054

[18] M. Grötschel, L. Lovasz et A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin (1988). | MR 936633 | Zbl 0634.05001

[19] M.M. Halldórsson, A still better performance guarantee for approximate graph coloring. Inform. Process. Lett. 45 (1993) 19-23. | MR 1207010 | Zbl 0768.68043

[20] P. Hansen, A. Hertz et J. Kuplinsky, Bounded Vertex Colorings of Graphs. Discrete Math. 111 (1993) 305-312. | MR 1210106 | Zbl 0782.05032

[21] P. Hansen, J. Kuplinsky et D. De Werra, Mixed Graph Coloring. Math. Meth. Oper. Res. 45 (1997) 145-160. | MR 1435900 | Zbl 0880.90072

[22] A.J.W. Hilton et D. De Werra, A sufficient condition for equitable edge-colourings of simple graphs. Discrete Math. 128 (1994) 179-201. | MR 1271864 | Zbl 0798.05022

[23] E.L. Lawler, Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York (1976). | MR 439106 | Zbl 0413.90040

[24] F. Leighton, A Graph Coloring Algorithm for Large Scheduling Problems. J. Res. National Bureau Standards 84 (1979) 742-774. | MR 555214 | Zbl 0437.68021

[25] M. Middendorf et F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs, Discrete Mathematics 80 (1990) 327-333. | MR 1049253 | Zbl 0706.68058

[26] A. Pnueli, A. Lempel et S. Even, Transitive orientation of graphs and identification of permutation graphs. Canadian J. Math. 23 (1971) 160-175. | MR 292717 | Zbl 0204.24604

[27] F.S. Roberts, Discrete Mathematical Models. Prentice-Hall, Englewood Cliffs (1976). | Zbl 0363.90002

[28] Zs. Tuza, Graph colorings with local constraints - a survey, Discussiones Mathematicae - Graph Theory 17 (1997) 161-228. | Zbl 0923.05027

[29] V.G. Vizing, On an estimate of the chromatic class of a p-graph (en russe), Metody Discret Analiz. 3 (1964) 25-30. | MR 180505

[30] D.J.A. Welsh et M.B. Powell, An upper bound on the chromatic number of a graph and its application to timetabling problems, Computer J. 10 (1967) 85-87. | Zbl 0147.15206

[31] D. De Werra, Some models of graphs for scheduling sports competitions, Discrete Applied Mathematics 21 (1988) 47-65. | MR 953415 | Zbl 0656.90060

[32] D. De Werra, The combinatorics of timetabling, European Journal of Operational Research 96 (1997) 504-513. | Zbl 0917.90190

[33] D. De Werra, On a multiconstrained model for chromatic scheduling, Discrete Applied Mathematics 94 (1999) 171-180. | MR 1682165 | Zbl 0940.90030

[34] D. De Werra, Ch. Eisenbeis, S. Lelait et B. Marmol, On a graph-theoretical model for cyclic register allocation, Discrete Applied Mathematics 93 (1999) 191-203. | MR 1700194 | Zbl 0946.68026

[35] D. De Werra et Y. Gay, Chromatic scheduling and frequency assignment, Discrete Applied Mathematics 49 (1994) 165-174. | MR 1272486 | Zbl 0801.90067

[36] D. De Werra et A. Hertz, Consecutive colorings of graphs, Zeischrift für Operations Research 32 (1988) 1-8. | MR 932719 | Zbl 0633.05027

[37] D. De Werra et D. Kobler, Coloration et ordonnencement chromatique, ORWP 00/04, Ecole Polytechnique Fédérale de Lausanne, 2000.

[38] X. Zhou et T. Nishizeki, Graph Coloring Algorithms, IEICE Trans. on Information and Systems E83-D (2000) 407-417.