A numerical feasible interior point method for linear semidefinite programs
RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 1, pp. 49-59.

This paper presents a feasible primal algorithm for linear semidefinite programming. The algorithm starts with a strictly feasible solution, but in case where no such a solution is known, an application of the algorithm to an associate problem allows to obtain one. Finally, we present some numerical experiments which show that the algorithm works properly.

DOI : 10.1051/ro:2007006
Classification : 90C51, 90C22, 90C05
Mots-clés : linear programming, semidefinite programming, interior point methods
@article{RO_2007__41_1_49_0,
     author = {Benterki, Djamel and Crouzeix, Jean-Pierre and Merikhi, Bachir},
     title = {A numerical feasible interior point method for linear semidefinite programs},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {49--59},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {1},
     year = {2007},
     doi = {10.1051/ro:2007006},
     mrnumber = {2310539},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro:2007006/}
}
TY  - JOUR
AU  - Benterki, Djamel
AU  - Crouzeix, Jean-Pierre
AU  - Merikhi, Bachir
TI  - A numerical feasible interior point method for linear semidefinite programs
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2007
SP  - 49
EP  - 59
VL  - 41
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro:2007006/
DO  - 10.1051/ro:2007006
LA  - en
ID  - RO_2007__41_1_49_0
ER  - 
%0 Journal Article
%A Benterki, Djamel
%A Crouzeix, Jean-Pierre
%A Merikhi, Bachir
%T A numerical feasible interior point method for linear semidefinite programs
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2007
%P 49-59
%V 41
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro:2007006/
%R 10.1051/ro:2007006
%G en
%F RO_2007__41_1_49_0
Benterki, Djamel; Crouzeix, Jean-Pierre; Merikhi, Bachir. A numerical feasible interior point method for linear semidefinite programs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 1, pp. 49-59. doi : 10.1051/ro:2007006. http://archive.numdam.org/articles/10.1051/ro:2007006/

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995) 13-51. | Zbl

[2] F. Alizadeh, J.P.A. Haeberly and M.L. Overton, Primal-dual interior point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8 (1998) 746-768. | Zbl

[3] S.J. Benson, Y. Ye and X. Zhang, Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10 (2000) 443-461. | Zbl

[4] P. Gahinet, A. Nemirovski, The projective method for solving linear matrix inequalities. Math. Program. 77 (1997) 163-190. | Zbl

[5] C. Helmberg, F. Rendl, R.J. Vanderbei and H. Wolkowicz, An interior point method for semidefinite programming. SIAM J. Optim. 6 (1996) 342-361. | Zbl

[6] M. Kojima, S. Shindoh and S. Hara, Interior point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86-125. | Zbl

[7] Y. Nesterov and A. Nemirovski, Interior point polynomial algorithms in convex programming. SIAM Stud. Appl. Math. 13, Society for Industrial and applied Mathematics (SIAM), Philadelphia, PA (1994). | MR | Zbl

[8] A. Nemirovski and K. Scheinberg, Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic problems. Math. Program. 72 (1996) 273-289. | Zbl

[9] M. Overton and H. Wolkowicz, Semidefinite programming. Math. Program. 77 (1997) 105-109. | Zbl

[10] M.V. Ramana, L. Tuncel and H. Wolkowicz, Strong duality for semidefinite programming. SIAM J. Optim. 7 (1997) 641-662. | Zbl

[11] L. Vandenberghe and S. Boyd, Positive definite programming. SIAM Rev. 38 (1996) 49-95. | Zbl

[12] H. Wolkowicz, G.-P.-H. Styan, Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980) 471-506. | Zbl

[13] http://infohost.nmt.edu/ sdplib/

Cité par Sources :