Unified duality for vector optimization problem over cones involving support functions
RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 271-302.

In this paper we give necessary and sufficient optimality conditions for a vector optimization problem over cones involving support functions in objective as well as constraints, using cone-convex and other related functions. We also associate a unified dual to the primal problem and establish weak, strong and converse duality results. A number of previously studied problems appear as special cases.

DOI : 10.1051/ro/2013059
Classification : 90C29, 90C46, 90C25, 90C26
Mots-clés : vector optimization, cones, support function, optimality, duality
@article{RO_2014__48_3_271_0,
     author = {Suneja, Surjeet Kaur and Louhan, Pooja},
     title = {Unified duality for vector optimization problem over cones involving support functions},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {271--302},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     year = {2014},
     doi = {10.1051/ro/2013059},
     mrnumber = {3264379},
     zbl = {1295.90073},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ro/2013059/}
}
TY  - JOUR
AU  - Suneja, Surjeet Kaur
AU  - Louhan, Pooja
TI  - Unified duality for vector optimization problem over cones involving support functions
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2014
SP  - 271
EP  - 302
VL  - 48
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ro/2013059/
DO  - 10.1051/ro/2013059
LA  - en
ID  - RO_2014__48_3_271_0
ER  - 
%0 Journal Article
%A Suneja, Surjeet Kaur
%A Louhan, Pooja
%T Unified duality for vector optimization problem over cones involving support functions
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2014
%P 271-302
%V 48
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ro/2013059/
%R 10.1051/ro/2013059
%G en
%F RO_2014__48_3_271_0
Suneja, Surjeet Kaur; Louhan, Pooja. Unified duality for vector optimization problem over cones involving support functions. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 271-302. doi : 10.1051/ro/2013059. http://archive.numdam.org/articles/10.1051/ro/2013059/

[1] B.D. Craven, Nonsmooth multiobjective programming. Numer. Func. Anal. Optim. 10 (1989) 49-64. | MR | Zbl

[2] B. Mond and M. Schechter, A duality theorem for a homogeneous fractional programming problem. J. Optim. Theory. Appl. 25 (1978) 349-359. | MR | Zbl

[3] D.T. Luc, Theory of vector optimization. Springer (1989). | MR

[4] F. Flores-Bazán and C. Vera, Unifying efficiency and weak efficiency in generalized quasiconvex vector minimization on the real-line. Int. J. Optim. Theory: Theory, Methods and Appl. 1 (2009) 247-265. | MR | Zbl

[5] F. Flores-Bazán, N. Hadjisavvas and C. Vera, An optimal altenative theorem and applications to mathematical programming. J. Glob. Optim. 37 (2007) 229-243. | MR | Zbl

[6] F.H. Clarke, Optimization and nonsmooth analysis. A Wiley-Interscience Publication (1983). | MR | Zbl

[7] G.J. Zalmai, Generalized (η,ρ)-invex functions and global semiparametric sufficient efficiency conditions for multiobjective fractional programming problems containing arbitrary norms. J. Glob. Optim. 36 (2006) 51-85. | MR | Zbl

[8] I. Husain, A. Ahmed and R.G. Mattoo, On multiobjective nonlinear programming with support functions. J. Appl. Anal. 16 (2010) 171-187. | MR | Zbl

[9] I. Husain, Abha and Z. Jabeen, On nonlinear programming with support functions. J. Appl. Math. Comput. 10 (2002) 83-99. | MR | Zbl

[10] J. Jahn, Vector optimization: Theory, applications and extensions. Springer (2011). | MR

[11] M. Schechter, A subgradient duality theorem. J. Math. Anal. Appl. 61 (1977) 850-855. | MR | Zbl

[12] M. Schechter, More on subgradient duality. J. Math. Anal. Appl. 71 (1979) 251-262. | MR | Zbl

[13] R. Cambini, Some new classes of generalized concave vector-valued functions. Optim. 36 (1996) 11-24. | MR | Zbl

[14] R. Cambini and L. Carosi, Mixed type duality for multiobjective optimization problems with set constraints, in Optimality conditions in vector optimization, edited by Manuel Arana Jiménez, G. Ruiz-Garzón and A. Rufián-Lizan., Bentham Sci. Publishers, The Netherlands (2010) 119-142.

[15] S.K. Suneja, P. Louhan and M.B. Grover, Higher-order cone-pseudoconvex, quasiconvex and other related functions in vector optimization. Optim. Lett. 7 (2013) 647-664. | MR | Zbl

[16] S.K. Suneja, S. Sharma and Vani, Second-order duality in vector optimization over cones. J. Appl. Math. Inform. 26 (2008) 251-261.

[17] T. Illés and G. Kassay, Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. J. Optim. Theory. Appl. 101 (1999) 243-257. | MR | Zbl

[18] T. Weir, B. Mond and B.D. Craven, Weak minimization and duality. Numer. Funct. Anal. Optim. 9 (1987) 181-192. | MR | Zbl

Cité par Sources :