@article{RSA_1999__47_3_57_0, author = {Antoniadis, Anestis and Berruyer, Jacques and Filhol, Alain}, title = {Estimation semi-param\'etrique dans les familles doublement poissonniennes et application aux spectres de diffraction}, journal = {Revue de Statistique Appliqu\'ee}, pages = {57--80}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {47}, number = {3}, year = {1999}, language = {fr}, url = {http://archive.numdam.org/item/RSA_1999__47_3_57_0/} }
TY - JOUR AU - Antoniadis, Anestis AU - Berruyer, Jacques AU - Filhol, Alain TI - Estimation semi-paramétrique dans les familles doublement poissonniennes et application aux spectres de diffraction JO - Revue de Statistique Appliquée PY - 1999 SP - 57 EP - 80 VL - 47 IS - 3 PB - Société française de statistique UR - http://archive.numdam.org/item/RSA_1999__47_3_57_0/ LA - fr ID - RSA_1999__47_3_57_0 ER -
%0 Journal Article %A Antoniadis, Anestis %A Berruyer, Jacques %A Filhol, Alain %T Estimation semi-paramétrique dans les familles doublement poissonniennes et application aux spectres de diffraction %J Revue de Statistique Appliquée %D 1999 %P 57-80 %V 47 %N 3 %I Société française de statistique %U http://archive.numdam.org/item/RSA_1999__47_3_57_0/ %G fr %F RSA_1999__47_3_57_0
Antoniadis, Anestis; Berruyer, Jacques; Filhol, Alain. Estimation semi-paramétrique dans les familles doublement poissonniennes et application aux spectres de diffraction. Revue de Statistique Appliquée, Tome 47 (1999) no. 3, pp. 57-80. http://archive.numdam.org/item/RSA_1999__47_3_57_0/
[1] Hanbook of Mathematical Functions. Dover, New York.
, (1965).[2] Probability model choice in single samples from exponential families using Poisson log-linear modeling, and model comparison using Bayes and posterior Bayes factors. Statistics and Computing, 5, 113-120.
(1995).[3] Régression non linéaire et applications. Economica, Paris.
, , (1992).[4] Maximum likelihood estimation methods in powder diffraction refinements. Acta. Cryst., A46, pp. 692-711.
, , (1990).[5] Information and exponential families in statistical theory. John Wiley & Sons, New York. | MR | Zbl
(1978).[6] Asymptotic techniques for use in statistics. Chapman & Hall, New York. | MR | Zbl
, (1989).[7] Le lissage par fonction splines en statistique : revue bibliographique. Statistique et Analyse des données, 14 n° 1, 55-84.
, (1989).[8] A practical guide to splines. Springer-Verlag, Berlin. | MR | Zbl
(1978).[9] Testing the independence of a two-way table : New interpretations of chi-square statistics. Ann. Statist., 13, 845-913. | MR | Zbl
, (1985).[10] Double exponential families and their use in generalized linear regression. J. Amer. Statist. Assoc., 81, 709- 721. | MR | Zbl
(1986).[11] Smoothing and interpolation with generalized linear models. Quaderni di Statistica e Matematica Applicata alle Scienze Economico-Sociali, 12, 21-32.
(1990).[12] Flexible smoothing with B-splines and penalties. Statistical Sciences, 11, 89- 121. | MR | Zbl
, (1996).[13] Exponential dispersion models. J.R.S.S., Ser B, 49, 127- 162. | MR | Zbl
(1987).[ 14] Generalized linear interactive models. J.R.S.S., Ser A, 135, 370-384.
, (1972).[ 15] Linear Statistical Inference and Its Applications. John Wiley & Sons, New York. | MR | Zbl
(1973).[16] Communication privée.
, , (1998).[ 17] Overdispersed exponential regression models. Computational Statistics, 12, 209- 218. | Zbl
(1997).[18] Some aspects of the smoothing spline approach to nonparametric regression curve fitting. J.R.S.S., Ser B, 47, 1-52. | MR | Zbl
(1986).[ 19] Splines in Statistics. J. Amer. Statist. Assoc., 78, 351- 365. | MR | Zbl
, (1983).