Wavelet shrinkage of itch response data
Revue de Statistique Appliquée, Tome 47 (1999) no. 3, pp. 81-98.
@article{RSA_1999__47_3_81_0,
     author = {Morgan, Robert C. and Nason, G. P.},
     title = {Wavelet shrinkage of itch response data},
     journal = {Revue de Statistique Appliqu\'ee},
     pages = {81--98},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {47},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://archive.numdam.org/item/RSA_1999__47_3_81_0/}
}
TY  - JOUR
AU  - Morgan, Robert C.
AU  - Nason, G. P.
TI  - Wavelet shrinkage of itch response data
JO  - Revue de Statistique Appliquée
PY  - 1999
SP  - 81
EP  - 98
VL  - 47
IS  - 3
PB  - Société française de statistique
UR  - http://archive.numdam.org/item/RSA_1999__47_3_81_0/
LA  - en
ID  - RSA_1999__47_3_81_0
ER  - 
%0 Journal Article
%A Morgan, Robert C.
%A Nason, G. P.
%T Wavelet shrinkage of itch response data
%J Revue de Statistique Appliquée
%D 1999
%P 81-98
%V 47
%N 3
%I Société française de statistique
%U http://archive.numdam.org/item/RSA_1999__47_3_81_0/
%G en
%F RSA_1999__47_3_81_0
Morgan, Robert C.; Nason, G. P. Wavelet shrinkage of itch response data. Revue de Statistique Appliquée, Tome 47 (1999) no. 3, pp. 81-98. http://archive.numdam.org/item/RSA_1999__47_3_81_0/

[1] Burrus S.L., Gopinath R.A. (1997). Wavelets: introduction to wavelets and wavelet transforms. Prentice Hall, Englewood Cliffs, NJ.

[2] Coifman R.R., Donoho D.L. (1995). Translation-invariant de-noising. In A. Antoniadis and G. Oppenheim, editors, Wavelets and Statistics: Proceedings of the XVth Rencontres Franco-Belges des Statisticiens., volume 103 of Lecture Notes in Statistics. Springer-Verlag. | MR | Zbl

[3] Daubechies I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia. | MR | Zbl

[4] Donoho D.L., Johnstone I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3): 425-55. | MR | Zbl

[5] Donoho D.L., Johnstone I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass., 90: 1200- 1224. | MR | Zbl

[6] Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D. (1995). Wavelet shrinkage: asymptopia? (with discussion. J. R. Statist. Soc. B, 57: 301-337. | MR | Zbl

[7] Harris R. (1967). Iontophoresis. In S. Licht, editor, Therapeutic Electricity and Ultraviolet Radiation, pages 156- 178. Elizabeth Licht, New Haven.

[8] Johnstone I.M., Silverman B.W. (1997). Wavelet threshold estimators for data with correlated noise. J. R. Statist. Soc. B, 59: 319-351. | MR | Zbl

[9] Kolaczyk E. (1998). Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. (submitted for publication). | MR | Zbl

[10] Kovac A. (1998). Wavelet thresholding for unequally spaced data. PhD thesis, Department of Mathematics, University of Bristol, Bristol, UK.

[11] Mallat S.G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and MAchine Intelligence, 11(7): 674- 693. | Zbl

[12] Meyer Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge. | MR | Zbl

[13] Nason G.P., Silverman B.W. (1994). The discrete wavelet transform in s. Journal of Computational and Graphical Statistics, 3: 163-91.

[14] Spokoiny V.G. (1998). Image denoising: pointwise adaptive approach. Technical report, Weierstrass Institute for Applied Analysis and Stochastics.