Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires
Revue de Statistique Appliquée, Tome 49 (2001) no. 4, pp. 29-52.
@article{RSA_2001__49_4_29_0,
     author = {Goulard, Michel},
     title = {Mise en {\oe}uvre de l'algorithme {EM} pour l'estimation d'un mod\`ele lin\'eaire g\'en\'eralis\'e multinomial \`a effets al\'eatoires},
     journal = {Revue de Statistique Appliqu\'ee},
     pages = {29--52},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {49},
     number = {4},
     year = {2001},
     language = {fr},
     url = {http://archive.numdam.org/item/RSA_2001__49_4_29_0/}
}
TY  - JOUR
AU  - Goulard, Michel
TI  - Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires
JO  - Revue de Statistique Appliquée
PY  - 2001
SP  - 29
EP  - 52
VL  - 49
IS  - 4
PB  - Société française de statistique
UR  - http://archive.numdam.org/item/RSA_2001__49_4_29_0/
LA  - fr
ID  - RSA_2001__49_4_29_0
ER  - 
%0 Journal Article
%A Goulard, Michel
%T Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires
%J Revue de Statistique Appliquée
%D 2001
%P 29-52
%V 49
%N 4
%I Société française de statistique
%U http://archive.numdam.org/item/RSA_2001__49_4_29_0/
%G fr
%F RSA_2001__49_4_29_0
Goulard, Michel. Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires. Revue de Statistique Appliquée, Tome 49 (2001) no. 4, pp. 29-52. http://archive.numdam.org/item/RSA_2001__49_4_29_0/

Agostini D., (1995) La floraison du kiwi (Actinidia deliciosaa cv. Hayward) : analyse de la variabilité et simulation par un modèle stochastique. Thèse de doctorat, Université de Lyon I.

Booth J.G., & Hobert J.P., (1999) Maximizing generalized linear mixed model likelihood with an automated Monte Carlo algorithm. J. Roy. Statist. Soc. Ser. B, 61, 1, 265-285. | Zbl

Doucet A., (1998) On sequential simulation-based methods for Bayesian filtering. Technical report CUED/F-INFENG/TR.310.

Fahrmeir L. & Tutz G., (1994) Multivariate statistical modelling based on generalized linear models. Springer-Verlag, New York, 425p. | MR | Zbl

Gammerman D., (1997) Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7, 57- 68.

Geyer C.J. & Thompson E.A. (1992) Constrained Monte Carlo maximum likelihood for dependent data. J. Roy. Statist. Soc. Ser. B 54, 3, 657-699. | MR

Liu J.S. & Chen R. (1995). Blind deconvolution via sequential imputations. J.A.S.A., 90, 430, 567- 576. | Zbl

Liu J.S. & Chen R. (1998) Sequential Monte Carlo methods for dynamic systems. J.A.S.A., 93, 443, 1032- 1044. | MR | Zbl

Louis T.A. (1982) Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc. Ser: B 44, 2, 226-233. | MR | Zbl

Mcculloch C.E., (1997) Maximum likelihood algorithms for generalized linear mixed models. JASA, 92, 437, 162-170. | MR | Zbl

Quintana F.A., Liu J.S. & Del Pino G.E., (1999) Monte-Carlo EM with importance reweighting and its applications in random effects models. Computational Statistics & Data Analysis, 29, 429-444. | Zbl

Robert C., (1996) Méthodes de Monte-Carlo par chaînes de Markov. Statistique mathématique et probabilité, Economica, Paris, 340 p. | MR | Zbl

Tanner M. A, (1993) Tools for statistical inference. 3rd edition. Springer, New-York, 207 p. | MR | Zbl

Zeger S.L. & M. Rezaul Karim, (1991) Generalized linear models with random effects; A Gibbs sampling approach. JASA, 86, 413,79-86. | MR