Note on the two congruences ax 2 +by 2 +e0, ax 2 +by 2 +cz 2 +dw 2 0(mod.p), where p is an odd prime and a¬0, b¬0, c¬0, d¬0(mod.p)
Rendiconti del Seminario Matematico della Università di Padova, Tome 18 (1949), pp. 311-315.
@article{RSMUP_1949__18__311_0,
     author = {Bagchi, Haridas},
     title = {Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {311--315},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {18},
     year = {1949},
     zbl = {0033.01202},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1949__18__311_0/}
}
TY  - JOUR
AU  - Bagchi, Haridas
TI  - Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1949
SP  - 311
EP  - 315
VL  - 18
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1949__18__311_0/
LA  - en
ID  - RSMUP_1949__18__311_0
ER  - 
%0 Journal Article
%A Bagchi, Haridas
%T Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1949
%P 311-315
%V 18
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1949__18__311_0/
%G en
%F RSMUP_1949__18__311_0
Bagchi, Haridas. Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$. Rendiconti del Seminario Matematico della Università di Padova, Tome 18 (1949), pp. 311-315. http://archive.numdam.org/item/RSMUP_1949__18__311_0/