Distributional boundary values in 𝔇 L p ' . III
Rendiconti del Seminario Matematico della Università di Padova, Tome 48 (1972), pp. 137-158.
@article{RSMUP_1972__48__137_0,
     author = {Carmichael, Richard D.},
     title = {Distributional boundary values in $\mathfrak {D}^{\prime } _{L^p}$. {III}},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {137--158},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {48},
     year = {1972},
     mrnumber = {440060},
     zbl = {0276.46018},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1972__48__137_0/}
}
TY  - JOUR
AU  - Carmichael, Richard D.
TI  - Distributional boundary values in $\mathfrak {D}^{\prime } _{L^p}$. III
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1972
SP  - 137
EP  - 158
VL  - 48
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1972__48__137_0/
LA  - en
ID  - RSMUP_1972__48__137_0
ER  - 
%0 Journal Article
%A Carmichael, Richard D.
%T Distributional boundary values in $\mathfrak {D}^{\prime } _{L^p}$. III
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1972
%P 137-158
%V 48
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1972__48__137_0/
%G en
%F RSMUP_1972__48__137_0
Carmichael, Richard D. Distributional boundary values in $\mathfrak {D}^{\prime } _{L^p}$. III. Rendiconti del Seminario Matematico della Università di Padova, Tome 48 (1972), pp. 137-158. http://archive.numdam.org/item/RSMUP_1972__48__137_0/

[1] Beltrami, E.J., and Wohlers, M.R.: Distributional Boundary Values of Functions Holomorphic in a Half Plane, J. Math. Mech. 15 (1966), 137-145. | MR | Zbl

[2] Bochner, S.: Group Invarience of Cauchy's Formula in Several Variables, Annals of Math. 45 (1944), 686-707. | MR | Zbl

[3] Bochner, S., and Martin, W.T.: Several Complex Variables, Princeton University Press, Princeton, N.J., 1948. | MR | Zbl

[4] Carmichael, Richard D.: Distributional Boundary Values of Functions Analytic in Tubular Radial Domains, Indiana U. Math. J. (formerly J. Math. Mech.) 20 (1971), 843-853. | MR | Zbl

[5] Carmichael, Richard D.: Distributional Boundary Values in D' Lp, Rendiconti Sem. Mat. Università di Padova 43 (1970), 35-53. | Numdam | MR | Zbl

[6] Carmichael, Richard D.: Distributional Boundary Values in D' Lp. II, Rendiconti Sem. Mat. Università di Padova 45 (1971), 249-277. | Numdam | MR | Zbl

[7] Carmichael, Richard D.: Functions Analytic in an Octant and Boundary Values of Distributions, J. Math. Analysis Appl. 33 (1971), 616-626. | MR | Zbl

[8] Carmichael, Richard D.: Distributions as the Boundary Values of Analitic Functions, Proc. Japan Acad. 45 (1969), 861-865. | MR | Zbl

[9] Carmichael, Richard D.: Generalized Cauchy and Poisson Integrals and Distributional Boundary Values, SIAM J. Math. Analysis (to appear). | MR | Zbl

[10] Carmichael, Richard D.: The Paley-Wiener-Schwartz Theorem for Functions Analytic in a Half Space, Ph. D. Thesis, Duke University, Durham, N.C., 1968.

[11] Hille, Einar, and Tamarkin, J.D.: On a Theorem of Paley and Wiener, Annals of Math. 34 (1933), 606-614. | JFM | MR

[12] Hille, Einar, and Tamarkin, J.D.: A Remark on Fourier Transforms and Functions Analytic in a Half Plane, Compositio Math. 1 (1934), 98-102. | Numdam | Zbl

[13] Hille, Einar, and Tamarkin, J.D.: On the Absolute Integrability of Fourier Transforms, Fundamenta Math. 25 (1935), 329-352. | Zbl

[14] Korányi, Adam: A Poisson Integral for Homogeneous Wedge Domains, J. D'Analyse Math. 14 (1965), 275-284. | MR | Zbl

[15] Schwartz, L.: Théorie Des Distributions, Hermann, Paris, 1966. | MR | Zbl

[16] Stein, E.M., Weiss, G., and Weiss, M.: Hp Classes of Holomorphic Functions in Tube Domains, Proc. Nat. Acad. Sciences U.S.A. 52 (1964), 1035-1039. | MR | Zbl

[17] Stein, E.M., and Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, N.J., 1971. | MR | Zbl

[18] Vladimirov, V.S.: Methods of the Theory of Functions of Several Complex Variables, M.I.T. Press, Cambridge, Mass., 1966. | MR