The interpreted type-free modal calculus MC . II
Rendiconti del Seminario Matematico della Università di Padova, Volume 50 (1973), pp. 19-57.
@article{RSMUP_1973__50__19_0,
     author = {Bressan, A.},
     title = {The interpreted type-free modal calculus $MC^{\infty }$. {II}},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {19--57},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {50},
     year = {1973},
     zbl = {0285.02020},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1973__50__19_0/}
}
TY  - JOUR
AU  - Bressan, A.
TI  - The interpreted type-free modal calculus $MC^{\infty }$. II
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1973
SP  - 19
EP  - 57
VL  - 50
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1973__50__19_0/
LA  - en
ID  - RSMUP_1973__50__19_0
ER  - 
%0 Journal Article
%A Bressan, A.
%T The interpreted type-free modal calculus $MC^{\infty }$. II
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1973
%P 19-57
%V 50
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1973__50__19_0/
%G en
%F RSMUP_1973__50__19_0
Bressan, A. The interpreted type-free modal calculus $MC^{\infty }$. II. Rendiconti del Seminario Matematico della Università di Padova, Volume 50 (1973), pp. 19-57. http://archive.numdam.org/item/RSMUP_1973__50__19_0/

[1] or briefly [GIMC]: A. Bressan, A general interpreted modal calculus Yale Press, New Haven, 325 pp. (1972). | MR | Zbl

[2] R. Carnap, Meaning and Necessity, 2nd ed., The University of Chicago Press, 258 pp. (1956). | Zbl

[3] E. Mendelson, Introduction to mathematical logic, 300 pp. Van Nostrand, New York (1963). | MR | Zbl

[4] or briefly [IST]: J.D. Monk, Introduction to set theory, McGraw-Hill book Company, New York, 193 pp. (1969). | MR | Zbl

[5] A. Mostowski, Über die Unabhängigkeit des Wohlordnungsatzes wom Ordnungsprinzip, Fundamenta mathematicae, vol. 32, pp. 201-252. | Zbl

[6] J.M. Rosser, Logic for mathematicians, McGraw-Hill, New York, 530 pp. (1953). | MR | Zbl

[7] P. Suppes, Axiomatic set theory, Princeton, 265 pp. (1960). | MR | Zbl