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Distributional Boundary Values
and the Tempered Ultra-Distributions.

RICHARD D. CARMICHAEL (*)

1. Introduction.

Sebastiao e Silva [7, 8] and Hasumi [3] have introduced and
studied the tempered ultra-distributions in 1 and n dimensions. These
objects are equivalence classes of analytic functions defined by a certain
space of functions which are analytic in the 2n octants in C". These
authors have shown that the tempered ultra-distributions are alge-
braically isomorphic to the distribution space :ie’, which is the Fourier
transform space of the distributions of exponential growth -.

In [2] we have considered other problems concerning k’ and 
We have given necessary and sufficient conditions for functions analytic
in tube domains corresponding to open convex cones to have J6~

boundary values in the distributional sense. In certain cases we have
shown that the analytic functions which have 3(/ boundary values
can be recovered from the boundary value as the Fourier-Laplace
transform of the inverse Fourier transform of the boundary value.

Yoshinaga [10] and Zielezny [11] have also considered problems
concerning the distributions and Their results mainly concern
the problems of convolution and multipliers in and JC.

A comparison of the results concerning tempered ultra-distributions
in [7, 8] and [3] and the distributional boundary value results in [2]
leads one to consider if there is a connection between the distribu-
tional boundary value process in k’ and the tempered ultra-distri-

(*) Department of Mathematics, Wake Forest University, Winston-Salem,
North Carolina 27109, U.S.A.
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butions. More explicitly we desire to consider in this paper if there
is an isomorphic relationship between a quotient space of certain

analytic functions in octants which we have studied previously and
the set of all admissable distributional boundary values in R’ with
the isomorphism being defined by the boundary value process; and
we desire to show the connection between this quotient space and the
tempered ultra-distributions. We also desire in this paper to continue
our investigation of distributional boundary values in Je’ for functions
analytic in tubular cones, and some of the results which we obtain
will have a relation to the tempered ultra-distributions.

In section 3 of this paper we obtain some new results concerning
k’ boundary values of functions analytic in tube domains. We then
generalize our results here and in [2] to functions analytic in tubular
cones corresponding to open disconnected cones and obtain related
results. For these generalizations corresponding to certain open discon-
nected cones, the information we obtain will have an important con-
nection with the tempered ultra-distributions. In section 4 we restrict
our attention to the tubular cone defined by the union of the 2 n qua-
drants in Rs and show that a quotient space of functions analytic in
this tubular cone is algebraically isomorphic to the elements. of J6’
which are distributional boundary values. The isomorphism here is a
mapping which is constructed from the k’ boundary value mapping.
We then relate this present quotient space with the tempered ultra-
distributions. We show that there is a 1-1 correspondence between
the present quotient space and a subspace of the tempered ultra-
distributions and that corresponding elements of these two quotient
spaces generate exactly the same element of k’ through the respective
isomorphisms.

2. Notation and definitions.

All n-dimensional notation will be exactly as in Carmichael [2,
p. 767]. Definitions and properties of the function spaces H and H
and the distribution spaces and k’ are in [2, pp. 768-769]. The
Fourier and inverse Fourier transforms of functions and of and X’
are defined in [2, pp. 767-769]. Our notation for these transforms for
functions is ~[~(t); x] and x], respectively, [2, p. 767]; while
Y[ V] and U] will denote the Fourier transform of V E and the
inverse Fourier transform of U E k’, respectively, [2, pp. 768-769].
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We refer to [1, p. 845] and [2, p. 767] for definitions and terminology
concerning cones. We ask the reader to note the definitions of cone,
compact subcone, and indicatrix of the cone C, uc(t). We assume that
compact subcones of open cones are also open throughout this paper.
0* = ~t : ~t : t, YE C~ is the dual cone of the cone C.
T C will denote the set where C is a cone. If C
is open and convex TO will be called a tube domain, while if C is only
open, TO will be called a tubular cone. 0(C) will denote the convex
envelope of the cone C. The number

characterizes the nonconvexity of the cone C. If C is an open discon-

nected cone of the form where the C~ are open

convex cones, we call C’ a compact subcone of C if and only if C’ is

of the form where the C~ are compact subcones of Ci,

All distributional boundary value terminology and topological
vector space terminology are exactly as discussed in [2, p. 767].

All notation with respect to the open cone C = U Ccy where the
C1

CQ are the 2" open convex cones that are the quadrants in Rn, will
be exactly like that of Hasumi [3, p. 94]. Thus a denotes vectors

(aI,..., an) whose components are 0 or 1, and (-1)111 = (-1 )~i + ... + an .
The quadrant for each of
the 2n vectors a. Further, for section 4 of this paper we adopt the no-
tation that Ya E Oa is the point Ya = ((-1 )°’1, ... , (- 1)0’n) for each c~.

We now shall define the main space of analytic functions with
which this paper is concerned. Let C be an open cone in Rn, and let C’
be an arbitrary compact subcone of C. Let N(o, m) denote an open
ball of the origin in Rn of radius m &#x3E; 0. Denote T(C’, m) = Rn +
-~- i(C’B(C’~°’1 N(o, m))~. We consider functions f (z) which satisfy

where m &#x3E; 0 is arbitrary, is a constant depending on C’ and m,
and N is a nonnegative real number. We denote by A:.o the set of
all functions f (z) which are analytic in and which
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I

sastify (1) where C’ is an arbitrary compact subcone of C and m &#x3E; 0

is arbitrary. We have used the notation 3Étb,c for our functions because
for the case that C = U Ca, where the Ca are the 2" quadrants in Rn,

Q

we shall see that A:,o becomes a subspace of Sebastiao e Silva’s and
Hasumi’s space Am [3, p. 100].

We shall also consider in this paper a space of functions which

directly corresponds to the space Am for tubular cones. Let C be an

open cone and C’ be an arbitrary compact subcone of C. We define
the space .aeø,o as the set of all functions f (z) which are analytic in
T(O’, m) = m))), where N(0, m) is now taken
to be closed ball, and which satisfy (1) in T ( C’, m) where m &#x3E; 0 is
a fixed real number which depends on f (z) and C’. Thus f (z) E 
if for any compact subcone C’c C there exists m &#x3E; 0 depending on
f (z) and C’ such that f (z) is analytic in T ( C’, m) and satisfies (1 ) there,
where N(0, rra) is now taken to be the closed ball in T(C’, m). Again
the notation is chosen because of the direct relation to ~~, for
C being the union of the 2n quadrants in Rn. We have 
for any open cone C.

3. Functions analytic in tubular cones.

In this section we shall obtain information concerning the space
of functions We begin by considering this space for C being an
open convex cone. The following result is like [2, Theorem 3] for the
present more general space and we shall use directly parts of
the proof of [2, Theorem 3] where applicable.

THEOREM 1. Let C be an open convex cone and let C’ be an arbitrary
compact subcone of C. Let f (z) E A: o. Then there exists a unique ele-
ment with such that

where the equality (3) is in JC’,

is a strongly bounded set in JC’,
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where Q &#x3E; 0 is arbitrary but f ixed,

in the strong weak) topology of X’ as y =

PROOF. Let f (z) E A:,o. Because of (1), we may choose on n-tuple
.g of nonnegative integers such that

where n is the dimension, 8 &#x3E; 0 is arbitrary, and m &#x3E; 0 is arbitrary.
Put

By exactly the same methods of proof as in [1, Theorem 1] we have
that g(t) is continuous in t e R-, is independent of y = Im(z), and has
support in the dual cone C*= Also we have
immediately from (6) that g (t ) defined in (7) satisfies 

’

and this inequality holds for all since g(t) is

independent of y. Further, it follows from (6) that (z-Kf(z)) E L1 r1 L2
as a function of x = Re(z) for y = Im(z) fixed in N(o, m))).
Thus from (7) and the Plancherel theorem we obtain

with this Fourier transform being in the L2 sense.
We now define the differential operator d exactly as in [1, p. 847]

and put V= 4g(t) with the differentiation being in the distributional
sense. Because of (8) and [3, Proposition 3] or [11, Theorem 1] we
have and supp( V) ç 0* since g(t) has support there. Because
of our construction of V = dg(t) here and because of (8) we may proceed
exactly as in the proof of [2, Theorem 3, equation (34)] to show that

and



106

to obtain

where .g was chosen as in (6). (The details of these two facts are exactly
the same as in obtaining [2, equations (39) and (40), p. 779].) The
Fourier transforms in (9) and (10) can now be interpreted in both
the Ll and L2 sense because as noted above (exp (- 2ny, t))g(t)) 

Thus combining (9) and (10) we have

Since m &#x3E; 0 is arbitrary, y this equality holds for each z E and (2)
is obtained.

We now prove (3). Let y e k. There exists an element §(t) =
such that 1J’(x) = x] and

where these transforms can be interpreted in both the El and L2
sense [2, p. 768]. Let y be an arbitrary but fixed point in C’c C.
We have

Recall that V= 4g(t) where supp(g) C C*. Using (2), a change of
order of integration, (19), and the definition of the Fourier transform
mapping onto J6’ [2, p. 768], we obtain for z e T C~
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Thus (12) proves (3). Using (3) we now proceed as in the proofs of
[2, Theorem 3, equations (35) and (36)] and obtain (4) and (5) of this
paper; the proofs are the same and will not be repeated. The proof of
Theorem 1 is complete.

We now desire to extend Theorem 1 by considering functions in
~~, ~ , where C is an open cone which is not necessarily connected but
is the union of open convex cones. Let where the

Cj are the open convex cones. Let f (z) E for this open cone C.
Then for z restricted to we have

f (z) E A:,Oi. Applying Theorem 1 we thus obtain unique elements
with and unique elements 

j = 1, ... , r such that (2)-(5) hold for 

j = 1, ..., r. With an additional assumption on the boundary values U~ ,
j = 1, ... , r, of f (z) from each connected component of TO, which exist
as above because of Theorem 1, we are able to obtain considerably

r

more information concerning elements of A:,o for C = U C, as seen
in the following result. ; = 1

THEOREM 2. Let where the 0; are open con-

vex cones, and let C’ be an arbitrary compact subcone of 0. Let f (z) E A*
Let the JC’ boundary values of f (z), Uj E JC, which exist from each con-
nected component Tal, j = 1, ... , r, of be equal. Then there exists
a unique element VE Aoo with supp ( V’) C f t : y, t~ ~ 0, y E 0 ( C)~ such that

where the equality (14) is in JC’,

(15 ) ~ f (z) : y = Im(z) E C’ c C, Iyl ~ Q} is a strongly bounded set in X’,
where Q &#x3E; 0 is arbitrary but f ixed,

(16) in the strong (and weak) topology of Je’ as

and there exists a function F(z) E which is the analytic extension
of f (z) to = Rn + i0 ( C), where 0 ( C) denotes the convex envelope of C.
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PROOF. The k’ boundary values ZT ~ _ = 1, ... , r, of f (z)
exist from each connected component of TC as noted above, where the
Vi E with OJ, j = 1, ... , r. By hypothesis U1 = ... = Par
in k’, and we call this common value TI. But implies
Y~ _ ,~ -1 [ II ~], j = 1, ... , r, [2, p. 769]. Since the inverse Fourier

transform is a 1-1 mapping of k’ onto Aoo [2, p. 769], we obtain
VI _ ... = Yr in We call this common value V and thus have

Since

, then V vanishes on

and from the definition of eo (section 2), we have
Thus by (17) we have

and by a lemma of Vladimirov [9, Lemma 3, p. 220],  + 00.
Consider now the set {~: uo(C)(t) &#x3E; O}. If t e ft: &#x3E; 0), then

r

then by (18), Thus , and on

this set V vanishes. Thus V vanishes if t e f t: &#x3E; 0} which im-
plies that

Now let C’ be an arbitrary compact subcone of C = U Cj. Then

where each 0; is a compact subcone of

(recall section 2). Applying Theorem 1 to

j = 1, ... , r, we obtain

with this last equality holding in k’. Also by Theorem =

= Im(z) e Cj c C~ , is a strongly bounded set in X’ where Q &#x3E; 0
is arbitrary but fixed; and as we have already noted above, f(z)-+
- F [Vj] in the strong (and weak) topology of Je’ as y = 

Using these facts and recalling F=Fi=
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(13), (14), (15), and (16) as desired.
We now put

and ask the reader to recall the definition of for any open cone
C contained in section 2. Since 
- {t: and 0 ( C) is an open convex cone, we have

by exactly the proof of [2, Theorem 2] that .I’(z) E ~~,,°~C~ . ,Further
we have by (13) that F(z) exists and equals f (z) for z E where C’
is an arbitrary compact subcone of Cc 0 (C). Thus F(z) is the desired
analytic extension of f (z) to TO(O), and the proof is complete.

It is interesting to note in Theorem 2 that since F(z) = f (z) in 
C’ c C c o(C), then F(z) exists and is analytic in Tc’. However, F(z)
may not exist for all z E where C’ is an arbitrary compact subcone
of o ( C) because of the properties of being in ~~,,°~C) . Thus .F’(z) in Theo-
rem 2 actually has stronger properties than is indicated by saying
F(z) E Aw,o(Q).

As we shall see in section 4, Theorem 2 has a connection with the
tempered ultra-distributions. In order to begin seeing this connection
we shall consider some special cases of Theorem 2. Our purpose is
to show that for these special cases, even more information concerning

can be obtained than in Theorem 2. The in-
1=~ L

formation obtained will then be used to motivate our work in section 4
where we connect the boundary value mapping in Je’ with the tempered
ultra-distributions.

We consider the open cone C = U Ca, where the CQ are the r = 2"
6

quadrants in R". (Recall the definition of the C6 in section 2 and note
that they are open convex cones.) We note that for this open cone C,
the concept of compact subcone in the definition of is not needed.
Thus in the following result we make the convention that for C = U Ca ,

a

A*,c is the set of all functions f (z) that are analytic in Rn + iC,
, and which satisfy
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where m &#x3E; 0 is arbitrary. The conclusions in Theorem 2 corresponding
to this open cone C = U Oa then hold for z E TO.

a

COROLLARY 1. Let ~ and let Let the
u

K’ boundary values of f {z), U a E X’ which exists from each of the r = 2 n
octants T°° = Rn + be equal. Then f (z) is a polynomial in z E Cri
and hence an entire analytic f unction in Cn. Further, the conclusions
(13)-(16) of Theorem 2 hold with respect to z E TO, 0 = U 0,,, where V

is a f inite linear combination o f distributional derivatives of the Dirac
delta distribution.

PROOF. If then i s, and 1
0

where 0 denotes the origin in Rn. Applying Theorem 2 we obtain an
element VE ACX) having support at the origin such that (13)-(16) hold
for the present f (z), z E TO. Since D’, a direct application of
Schwartz [5, Th6or6me XXXV, p. 100] yields that V must be a finite
combination of distributional derivatives of the Dirac delta distri-
bution. Thus F(z) defined in (19) in Theorem 2 is immediately obtained
to be a polynomial in » Since is the analytic extension of
f (z), then f (z) is a polynomial. The proof is complete.

Of course an important special case of Corollary 1 is when n = 1
in which case C = ( (- oo, 0 ) the open cone which defines
the union of the upper and lower half planes in Cl. Especially in this
1-dimensional setting, Corollary 1 has a direct connection with the
tempered ultra-distributions as we shall see in section 4.

The proof of Corollary 1 indicates a way to strengthen the conclu-

sions in Theorem 2 when the open cone satisfies

a certain property that is possessed by

COROLLARY 2. Let where the C’~ are open convex

cones and such that It: UO(O)(t) c 0~ is a bounded set in Rn. Let 0’ be
an arbitrary compact s2tbcone of C, and let f (z) E Let the X’

boundary values of f(z), E X, which exist from each connected com-
ponent = 1, ... , r, of TO = Rn + i C, be equal. Then there exists
a unique element V E ~’ with compact support in It: such
that (13)-(16) hold, and there exists an entire analytic f unction F(z) which
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is the analytic extension of f (z) to Cn and which satis f ies

for some constant M and nonnegative real numbers N and b.

PROOF. From Theorem 2 we obtain VEACX) with supp(V) ~
~ f t: c 0~ . By hypothesis {t: is a bounded set; hence
supp(V) is compact. This fact and the fact that VE c D’ imply

Since supp (V) is compact, we can choose b ~ 0 such that

~t: It follows by the Paley-Wiener-Schwartz theorem
[4. p. 21] that F(z) defined in (19) is an entire analytic function which
satisfies (21). All other conclusions follow immediately from Theorem 2,
and the proof is complete.

In addition to the open cones C = ((- oo, 0 ) u (0, oo)) in

1-dimension and C = U Ca in n-dimensions, there is another important
a

open cone to which Corollary 2 is applicable. Put

is the future (past) light cone, and both are open convex cones
in Rn. Putting C = F+ we have 0 ( C) = Rn9 Cn, and
(0(C))*= = ~0~ . Thus Corollary 2 is applicable for C
being C = r+ (1 F-, and more explicitly the conclusions as in Corol-
lary 1 follow for (We note that as in the
case for C = U Oa, the concept of compact subcone is not needed in

a

the definition of for C = T+ U 1 ~~. ) The cones T+ and T’r are of
importance in quantum field theory where the notion of distributional
boundary values plays an important role.

The results which we have obtained in this section have all been
concerned with obtaining information concerning a given element
f(z) E .ae:,o. We desire now to prove a result in the converse directions
for this will be useful in section 4. Recall that the constructed element
Fe Aro in Theorem 1 was the distributional derivative of a continuous
function which had support in the dual cone of the given cone C and
which had the growth (8) independent of y. We now prove that all
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elements VE ACX) of this form define an element of ae:,a whose boundary
value in KI is the Fourier transform of V. In the following Dt denotes
the differential operator jotfl ... ot:n) with a being an
n-tuple of nonnegative integers.

THEOREM 3. Let C be an open convex cone and let C’ be an arbitrary
compact subcone of 0. Let Vt = Dta(g(t)), where g(t) is a continuous
function on R" which has support in 0* and satis f ies

for all Q E N(O, m))), where m &#x3E; 0 is arbitrary and Mm( 0’)
is a constant depending on C’ and m &#x3E; 0. Then YE Am and there exists
an element f (z) E such that (2)-(~) hold.

PROOF. Since g(t) is continuous and satisfies (22 ), then YE Am
by [3, Proposition 3] or [11, Theorem 1]. Put

- 

Vt (g(t)) we have used the definition of distributional
d£fiv%Nvon (23). This operatiun is valid by what we prove below.)
Now put

Let C’ be an arbitrary compact subcone of C. Let zo be an arbitrary
but fixed point of iC’. Now let .R (zo , r ) c TO’ be a neigh-
borhood of zo with radius r &#x3E; 0 whose closure is in and then
choose m’ &#x3E; 0 such that the closure of R(zo, r) is also contained in

T(O’, m’). The choice of R(zo, r) and subsequently the m’ &#x3E; 0 can

obviously be made as indicated since C’ is open (recall section 2).
Now let z E R(zo, r) be arbitrary but fixed and let y be an arbitrary
n-tuple of nonnegative integers. From Vladimirov [9, Lemma p. 223]
we obtain the existence of a real number d &#x3E; 0 depending on C’ such that

for all t E C* _ ~t : Since (22) holds for all De

arbitrary, y we now choose ,S~ = (y/2),
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z = x -E- iy E B(4, r). (Since z = x + iy E R(zo, r) and the closure of
is contained in T ( C’, m’ ), we have Thus 

= &#x3E; (m’/2). Further, since z = x + iy e B(z,,, r) c T(C~ m’),
then y c C’ and hence = (y/2 ) E C’ because C’ is a cone. Thus let-

ting m = (m’/2) we have Q = (y/2 ) E m))); hence (22)
holds by assumption for this choice of .~ and for m = (m’/2).) With
the above choice of S~ in (22) and using (25) we have

where this last inequality is obtained by applying Schwartz [6, Theo-
rem 32, p. 39] and Sn is the area of the unit sphere in Rn. The last
integral in (26) is finite and the last bound in (26) is independent of

We thus conclude from (26) that the integral
defining p (z) in (24) and any derivative of it converge uniformly
for r). Since z was an arbitrary point of the neighborhood
R(zo, r), this proves p(z) is analytic at zo . But zo was an arbitrary
point of TO’. Thus p(z) in (24) is analytic in TO’. Hence f (z) in (23)
is analytic in y where C’ is an arbitrary compact subcone of C.

We now prove that f (z) satisfies the desired growth condition.
Again using Vladimirov [9, Lemma 2, p. 223] we obtain the existence
of a real number d &#x3E; 0 depending on C’c C such that

Let m &#x3E; 0 be arbitrary and y = Im(z) E N(O, m))). Arguing
as in the preceeding paragraph we have Q = (y/2) E 

(m/2); )~ ; hence (22) holds for this choice of D. Thus by (27)
and (22) with this choice of Q, we argue as in (26) and obtain that
p(z) in (24) satisfies
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for z = x + iy E T ( C’, m), m &#x3E; 0 being arbitrary. In the last inequality
of (2-8) we have again used Schwartz [6, Theorem 32, p. 39] as in (26)
where Sn denotes the area of the unit sphere in R-, and this last inte-
gral in (28) is finite for each m &#x3E; 0. (28) shows that p(z), z ET(O’, m),
is bounded by a constant depending on C’ and m &#x3E; 0. Thus from (23)
the desired growth (1) for f (z) now follows immediately for z E T ( C’, m),
C’ c C, m &#x3E; 0 being arbitrary. This completes the proof that f (z) in
(23) is in A:,a.

Now that we have (2) in the conclusion of this theorem (recall (23 )) , y
we proceed exactly as in obtaining (3) in the proof of Theorem 1 (re-
call (12)) and obtain (3) in the conclusion of the present theorem.
Then using (3), we obtain (4) and (5) in the conclusion of this theorem
exactly as (4) and (5) were obtained in Theorem 1. This completes
the proof of Theorem 3.

By combining Theorems 1 and 3 we note the following facts which
will be important to us in section 4. Let C be an open convex cone.
Let A’ denote the subset of coinsisting of distributional derivatives
of functions g(t) which are continuous on R", have support in C*,
and satisfy (22). Let X’ 0 denote the subset of JC’ defined by

Then Theorems 1 and 3 yield
that the construction f(z) -~ V = given through (7) in Theorem 1
maps onto and the boundary value mapping given in (5)
maps C : so e images un er ese mappings are unique.
Further, it is easily seen that both of these mappings are 1-1. This
follows immediately because of the recovery of the elements f {z) E 
as the Fourier-Laplace transform of V E Ac in (2) and the fact that the
Fourier and inverse Fourier transforms from A’ to Je~ and Kl to Ac
respectively, are isomprhisms. Thus we conclude from Theorems 1
and 3 that At,c is algebraically isomorphic to both AO and R’ c with
the vector space isomorphisms being the construction f(z) -~ V =
= L1g(t) given through (7) in Theorem 1 and the X’ distributional
boundary value mapping given in (5), respectively. (These mappings
obviously satisfy the desired linearity properties.) We thus have the
following corollary of Theorems 1 and 3.

COROLLARY 3. Let C be an open convex cone. Then is alge-
braically isomorphic to both !1~ and 
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4. The boundary value mapping and tempered ultra-distributions.

Throughout this section C = U Ca is the open cone in Rn defined

by the 2n quadrants We con-
sider the functions corresponding to C = U Ca . As in the par-’ 

try

agraph preceeding Corollary 1, we note that A:,a is defined without
use of compact subcones for this C = U Oa. Thus throughout this

section -
u

, if and only if f (z) is analytic in TO =

and satisfies (20) for m &#x3E; 0 being arbitrary. is si-

milarly defined for each of the quadrants Ca; and we note that the
conclusions of Theorems 1 and 3, corresponding to the open convex
cone C being any of the C~ will hold for z E 

Corresponding to the open cone C define subspaces
«

of Aco and JC’ like those defined in the last paragraph of section 3 prior
to Corollary 3. We use the same notation and X’ for the subspaces
of Aco and X’ corresponding to C = U Ca that we are about to define

Q

as the notation in the last paragraph of section 3. The reader should
note now that throughout this section and C = U Ca, will

«

denote the subspaces of and X’ corresponding to the open discon-
nected cone C that we are about to define. On the other hand and

X’ will denote the subspaces of A, and X’ as defined in the last par-
agraph of section 3 because each of the Ca are open convex cones.
As the reader will see the only difference in and and 

is that a support property is held by the function g(t) corresponding
to the open convex cones C6 and not for the open disconnected cone

a

We now define ~1.~ and C = U C6: Throughout this section 
0’

C = U Ca, will denote the set of all elements VE Aco which are distri-

butional derivatives of continuous functions g(t) satisfying

for all I such that
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is arbitrary. We then put

with this Fourier transform being that defined from A, 1 -1 and
onto k’ [2, p. 768].

In this section we show that for the open cone C = U C,, the
or

space Rl is isomorphic to a quotient space of by a certain sub-
space that will be determined below. The isomorphism will be generated
by a boundary value mapping. We then relate our isomorphic rep-
resentation to the tempered ultra-distributions.

We now define the mapping that will generate the isomorphism.
Let y6 ... , (-1 )°n) E Ca for each of the 2n n-tuples a.
Let f(z) E A:,a, C = U Ca. Then the Je’ boundary value of f (z),

0"

denoted BV(f(z)), is defined to be the element U G kl such that

with the convergence being in the str n n

of K’. Obviously the 2ft limits in (31) exist because of Theorems 1
and 3 corresponding to each of the 2" open convex cones C,,. Further
it is obvious that the element !7eJ(/ so obtained is in because
for each u,

by Theorem 1; and by the construction of Theorem 1, Ya is the distri-
butional drivative of a continuous function having support in (Ca)*
and satisfying (29) for all Q E Oa such that 

m &#x3E; 0 being arbitrary.
We now wish to identify the kernel of the mapping BY. Before

doing so we define pseudo-polynomial. A pseudo-polynomial p (z) is

any function of the variable Rn -~- iC, 9 C = which is a
finite linear combination of functions of the form a
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wheres is a nonnegative integer and

where the now 2n-1 quadrants CQ~~~ are defined

Here also denotes the functions defined as before but restricted
to the tubular cone defined by the now 2n-l quadrants in 

Obviously i Thus a pseudo-
polynomial p (z) is any element of . of the form

were J We denote the

set of all pseudo-polynomials in by 1Ic and prove the following
theorem.

a

fined in (31) is the set 77c of all pseudo-polynomials in A:.o.
PROOF. We first show that any pseudo-polynomial p(z) is in the

kernel of Because of the obvious linearity of BV, it suffices to
consider p (z) of the form

for a fixed j = 1, ... , n and a fixed nonnegative integer s. Obviously,
the strong JC’ boundary value of (z~ ) from the upper (lower) half plane
Im(zj)&#x3E; 0 (Im(zj)  0) is (Xj)8, Re(zj). Denoting the strong X’
boundary value of from each of the 2 n-1 octants in C’n-1 de-
fined by the as it follows that the strong JC’ boundary value
from each of the 2" octants Tc- is ((Xj)8 E JC’. By the construc-
tion of B Tr it follows immediately that p (z) is in the kernel of B V~.
Thus the set of all pseudo-polynomials IIC is in the kernel of BV.

To show that the reverse containment also holds we first note that
because of the construction of B V in (31 ), the image Ue Rl of f (z) E A:,o
must be of the form where

each (Recall the terminology Ac for an open convex cone C
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in the last paragraph of section 3.) But the Fourier transform and

inverse Fourier transform of Am onto 36’ and k’ onto respectively
are both vector space isomorphisms. Thus the kernel of the map-

ping BV is exactly the kernel of the mapping S from A:,o to ~1.~
defined by

where each is constructed from f (z) E for z E TOa as

in Theorem 1. The determination of the kernel of S in (34) can be
achieved by exactly the argument of Hasumi [3, p. 101] in determin-
ing his kernel 1I; for the mapping Y of Hasumi [p. 101, line 7] restricted
to our space is exactly the mapping S in (34). Since we now desire
to show that if f (z) is in the kernel of S in (34), then f (z) E 77c and
since Hasumi has omitted the details in this direction [3, p. 101] in
his argument, we now give an argument which proves this implica-
tion for completeness of our proof. The argument is completely de-
termined by the 2-dimensional case. If n = 2, then for f (z) in the
kernel of S in (34) we have (V(0,0) - V(0,1) - V(1,O) -~- V(1,1)) = 0 in Am.
Thus

For any quadrant its dual cone ( Ca)* is exactly the closure of 
Thus from (35) and (36) we obtain

A direct application of Schwartz [5, Th6or6me XXXVI, p. 101] yields
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Here ri and r2 are nonnegative integers, 6 is the Dirac delta distribution,
and WS(t1) are elements of in 1-dimension with respect to t2

independent of tx and with respect to t1 independent of t2 , respectively,
for each s = 0, ..., r1 and each s = 0, ... , r2 , respectively. From (37)
it follows that (V(0,0) - V(0,1) - V(1,O) + is of the form

for some and WS(tl) as described above. From this it follows
in this 2-dimensional case that

for f (z) in the kernel of S in (34). This technique extends immediately
to n-dimensions. We thus conclude that if f (z) is in the kernel of the
mappings in (34), then f (z) must be a pseudo-polynomial. Since the
kernel of BV in (31) is exactly the kernel of S in (34), then if f (z) is
in the kernel of it must be a pseudo-polynomial. We conclude
from this and the previously proved converse direction that the kernel
of BV is exactly 1Ic , the set of all pseudo-polynomials defined in (33).
The proof of Theorem 4 is complete.

We now define the space %e to be the quotient space of A:.a by
the set of all pseudo-polynomials That is

with this being a quotient space of vector spaces. We prove that
as defined in (30) is

v

isomorphic to ’IL, under an isomorphism that is generated by the map-
ping B V defined in (31).

THEOREM 5. Let C = U Then is isomorphic to the space
C1

with the isomorphism being de f ined by the mapping BV. I f u(z) E ’BLa
and TT E is the corresponding element under the isomorphism, then

where f(z) is any representative of u(z).
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PROOF. We denote elements of by ~c(z). Define the mapping BY
from to J~~ as follows. If u(z) E put BV(u(z)) = B V (f (z))
where the mapping BV is defined in (31) and f(z) is any representative
of u(z). We show that BF is the desired isomorphism. Since BV is

linear, y then BV obviously satisfies the desired linearity properties.
We also have immediately that BV is 1-1 because of the kernel 77c
of the mapping B Y. Thus BY is a vector space isomorphism from ‘L~C
to It remains to be proved that BY is an onto mapping. Let

u C- X’, &#x3E; Then for some element and hence
V = Y-i[ U]. Recalling the definition of in the second paragraph
of this section 4, we have that V = where g(t) is a continuous
function satisfying (29). We now put

where Ia(t) denotes the characteristic function of the dual cone (Ca)*
of each of the 2 n open convex cones Corresponding to each Ya
we put

define a function e TO, C = U Ca, from the 2" f«(z) as
cr

follows : for each of the 2n values of the n-typle u, we put

We thus have

Further, by Theorem 3, the function f a(z) defined in (40) is an element
of and satisfies + i8Ya) ~ ,~ [ Y~] in the strong topology of
JC’ as 8 ~ 0+. Combining these facts we immediately see that the
function f (z) defined in (41) is an element of .ae:,o, C = U C,, which
maps to the given element under the mapping B V defined
in (31). Hence f (z) is a representative of an element u(z) E ’BLa such
that u(z) maps to the given TI E Rl under BV. This proves that BY
is an onto mapping from UC to Rl ; hence UC and JCc are isomorphic.
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Further, (39) follows immediately from our construction of BY. The

proof of Theorem 5 is complete.
We now shall relate the present space ’l1a of equivalence classes

of analytic functions with the tempered ultra-distributions ’t1 of Se-
bastiao e Silva [7, p. 70] and Hasumi [3, p. 101]. First we restrict
our attention to 1-dimension. In this case C = ((- cxJ, 0) u (0, oo)) ;
and as a direct consequence of Corollary 1 and our definition of BV
in (31), any element of A*,,o which is in the kernel of must be a

polynomial in Cl. This of course forces 77c to be exactly the set
of all polynomials in for C = ((- 00, 0) U (0, 00)). But we

know from [7, p. 70] and [3, p. 101] that for 1-dimension the kernel 1I
in the definition of flL is also the set of polynomials in z E Cl. Thus
since A:,o c Am, A. being defined in [3, p. 100], then elements of ’t1a
defined in (38) are tempered ultra-distributions for n = 1 and
C = ((- oo, 0 ) U (0, oo)) .

But if the dimension n is larger than 1, then we have A*,c c Am
and . , with both containments being proper. Thus

if n&#x3E;2, elements of Uc are not tempered ultra-distributions. But

since we obviously have (1I r’1 = Hc then we can define a 1 -1
correspondence between elements of and the subspace of cu,

generated by as in the following. If u(z) E then

u(z) = {f(z) + p (z)) for some fixed e where p(z) ranges over 1Ic .
For this same f (z), u’(z) _ ~ f (z) + q(z)}, where q(z) ranges over 1I,
is an element of flL; that is u’(z) is a tempered ultra-distribution.
Conversely, given an element E ILL defined by an element f (z) E 
then an element u(z) E ’B.10 can be constructed from this same f (z) by
adding to it p(z) ranging over Ilc. We thus correspond

where u(z) E and ~’ (z) E 9.1 both have the same f (z) E A:,a as a
representative. Since (II r’1 = 1Ic , this is a 1-1 correspondence
between the elements of and the subspace of the tempered ultra-
distributions generated by A:’,o.

We now let the dimension n be arbitrary. We extend the cor-
respondence (42) to n = 1 by considering the symbol H to mean
equality for n = 1. Let u(z) and let u’(z) be the corresponding
tempered ultra-distribution as in (42). Because of the construction
of Hasumi [3, pp. 99-101] and the construction in this paper leading to
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the mapping BY defined in (31), it is now clear that the element U EX’
in the duality (39) corresponding to u(z) E’B)’o and the element U in
the duality of [3, Proposition 5, p. 101] corresponding to the tempered
ultra-distribution u’(z) such that ~(z) ~ u’(z) as in (42) are exactly
the same element of ~’ (and hence are exactly the same element of
the subspace Xl, C = U Oa, defined in (30).) We thus have the fol-

or

lowing theorem which relates the space with the tempered ultra-
distributions U.

THEOREM 6..Let 0 = U Oa. The correspondence (42) is a 1-1
(J

correspondence between the elements of and the subspace of the tem-
pered ultra-distributions generated by if u(z) E and

such that (42), then the element 

generated f rom u(z) by (39) and the element U E X’ generated f rom u’(z)
by [3, Proposition 5, p. 101] are identical ; and hence 

We emphasize again that if n = 1 in Theorem 6, the correspond-
ence (42) is actual equality. Finally, we note the following. Because
of the properties of the space Am [3, p. 100] it is now obvious that the
only tempered ultra-distributions that will have representatives which
have distributional boundary values in 36’ are those tempered ultra-
distributions u’(z) that are generated by elements 
If the dimension n = 1, then all representatives of such a tempered
ultra-distribution u’(z) will have JC’ boundary values. But if n ~ 2,
then the only representatives of such a u’ (z) e U that will have Z’
boundary values are those representatives of the form (f (z) + p(z))
where f (z) E A:,o generates u’(z) and p (z) ranges over 1Ic. But there
are other representatives of u’(z) of the form ( f (z) + q(z)) where q(z) e77
such that q(z) 0 H,,. Thus if the dimension n &#x3E; 2, no tempered ultra-
distribution has the property that all of its representatives have ~’
boundary values.

REFERENCES

[1] R. D. CARMICHAEL, Distributional boundary values of functions analytic
in tubular radial domains, Indiana Univ. Math. J., 20 (1971), pp. 843-853.

[2] R. D. CARMICHAEL, Distributions of exponential growth and their Fourier
transforms, Duke Math. J., 40 (1973), pp. 765-783.



123

[3] M. HASUMI, Note on the n-dimensional tempered ultra-distributions, Tôhoku
Math. J., 13 (1961), pp. 94-104.

[4] L. HÖRMANDER, Linear Partial Differential Operators, Springer-Verlag,
Berlin, 1963.

[5] L. SCHWARTZ, Théorie des Distributions, Hermann, Paris, 1966.

[6] L. SCHWARTZ, Mathematics for the Physical Sciences, Addison-Wesley,
Reading, Mass., 1966.

[7] J. SEBASTIÃO E SILVA, Les fonctions analytiques comme ultra-distribu-

tions dans le calcul opérationnel, Math. Ann., 136 (1958), pp. 58-96.

[8] J. SEBASTIÃO E SILVA, Les séries de multipôles des physiciens et la théorie
des ultradistributions, Math. Ann., 174 (1967), pp. 109-142.

[9] V. S. VLADIMIROV, Methods of the Theory of Functions of Several Complex
Variables, M.I.T. Press, Cambridge, Mass., 1966.

[10] K. YOSHINAGA, On spaces distributions of exponential growth, Bull. Kyushu
Inst. Tech. Math. Natur. Sci., 6 (1960), pp. 1-16.

[11] Z. ZIELEzNY, On the space of convolution operators in K’1, Studia Math.,
31 (1968), pp. 111-124.

Manoscritto pervenuto in Redazione il 6 febbraio 1976.


