A sequence of theories for arithmetic whose union is complete
Rendiconti del Seminario Matematico della Università di Padova, Tome 57 (1977), pp. 75-92.
@article{RSMUP_1977__57__75_0,
     author = {Ursini, Aldo},
     title = {A sequence of theories for arithmetic whose union is complete},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {75--92},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {57},
     year = {1977},
     mrnumber = {526185},
     zbl = {0411.03053},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1977__57__75_0/}
}
TY  - JOUR
AU  - Ursini, Aldo
TI  - A sequence of theories for arithmetic whose union is complete
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1977
SP  - 75
EP  - 92
VL  - 57
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1977__57__75_0/
LA  - en
ID  - RSMUP_1977__57__75_0
ER  - 
%0 Journal Article
%A Ursini, Aldo
%T A sequence of theories for arithmetic whose union is complete
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1977
%P 75-92
%V 57
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1977__57__75_0/
%G en
%F RSMUP_1977__57__75_0
Ursini, Aldo. A sequence of theories for arithmetic whose union is complete. Rendiconti del Seminario Matematico della Università di Padova, Tome 57 (1977), pp. 75-92. http://archive.numdam.org/item/RSMUP_1977__57__75_0/

[1] S. Feferman, Arithmetization of Metamathematics in a general setting, Fund. Mat. 49 (1960) pp. 35-92. | MR | Zbl

[2] S. Feferman, Transfinite recursive pregressions of axiomatic theories, Joun., of Symb. Logic, 27 (1962) pp. 259-316. | MR | Zbl

[3] R. Magari, Significato e verità nell'aritmetica peaniana, Ann. di Mat. Pura e Appl., 4 (103) 1975, pp. 343-368. | MR | Zbl

[4] M.H. Löb, Solution of a problem of Leon Henkin, Journ. of Symb. Logic, 20 (1955) pp. 115-118. | MR | Zbl

[5] H. Rogers, Jr. Theory of recursive functions and effective computability, Mc Graw Hill ; New York, 1967. | MR | Zbl

[6] C. Smorynski, Consistency and related metamathematical properties, Amsterdam Mathematisch Instituut, Rp. 75-02.

[7] A. Ursini, On the set of « meaningful » sentences of arithmetic, to appear in Studia Logica. | MR | Zbl