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On the construction of factorial designs using
abelian group theory

ALESSANDRA GIOVAGNOLI

1. - Introduection

In many experimental situations the investigator would like to
examine the effects of many variables (FAcTORs) simultaneously
and estimate the way they interact with one another. For example
the factors may be drugs, fertilizers, pressure and temperature,
chemical reactants ete.

Assume tath for each of them several different modalities or
degrees of intensity (LEVELS) are possible, like for instance different
concentrations of a drug, or degrees of temperature ete. In parti-
cular a factor will always have at least two levels : present-absent.
FACTORIAL EXPERIMENTS are those in which factors are examined
together, as opposed to one at a time. This allows greater precision
and enables us to test their independence and estimate their inte-
ractions (see for instance [10] and [11]) If 4, , 4,, ..., 4,, denote the
factors and s; (i =1, 2, ..., m) is the number of levels of factor 4,,
then we speak of an s, X s, X ... X s,-experiment.

The problem of designing, i.e. planning, a factorial experiment
is that of assigning TREATMENTS, i.e. combinations of factors each
at a given level, to experimental units in a way that will make it pos-
sible, once the experiment is carried out, to draw conclusions from
the data with maximum precision. The following difficulties may
arise :

a) The total number of treatments (= s, s, ... s,) is too high,
taking into account the need to replicate the experiment ;
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b) the experimental units (PLoTs) are not homogeneous, due
to the presence of so-called SUB-EXPERIMENTAL FACTORS i. e. envi-
ronmental variables, like fertility of the soil, humidity of the air,
which may interfere with the outcome of the experiment but are
beyond the investigator’s control. Usually it is assumed that experi-
mental factors and sub-experimental ones do not interact.

To overcome problems a) and b) we must sacrifice some of the
information on the less interesting effects and/or interactions through
the well known techniques of ALIASING and CONFOUNDING.

An extensive literature deals with FACTORIAL DESIGNS for 2m-
experiments, 3m-experiments and the so-called mixed 2m x 3%-
experiments. If s, = s, = ... =, = a prime power, & well-known
method of constructing aliased and confounded designs exists, based
on finite affine and projective geometries. (See [1] and [2]) .

Recently, more general constructions have been given, based on
abelian groups, which apply to all types of factorial experiments
see [4],[5].

The purpose of this paper is to modify the ideas and methods
of [3], [4], [F] and [6] to account for the use of pseudofactors, showing
that greater flexibility in the construction and — in some cases —
new results can be obtained in this way. The language and symbols
employed will be those of [7] and [8] which make wide use of duality
and bilinear forms in modules. For this reason some theorems of
finite abelian group theory are briefly recalled in 2. Familiarity
with the terminology of experimental designs will be assumed.

The philosophy underlying the paper is to emphasize the réle
of abstract algebra in translating experimental problems into rigorous
scientific language : the theory of groups provides not only greater
mathematical elegance and economy of thought, but also construct-
ion methods that are very general indeed.

2. — Notation

In the sequel we shall use the following notation and well-known
results.

Let G; (+) (i =1,...,m) be cyclic groups of finite order s;. Con-
sider the group

G=G0GdD.. G,
Then
|G| =8,85... 8-
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Let y, be a common multiple of s ,...,s,. Then each @, and G
can be regarded as Z, -modules. Every subgroup of G is a Z,-
submodule of G. To make our computations simpler we can imagine
that G, is embedded in Z  , by taking

ve?
Gy =10, yilsy 5 2yyfsi5 ooy (85 — 1) vefsi}
where all the integers will be taken mod. ;.

An element of G will be denoted by an m-tuple (or row vector)

= (L., o< G

Assume [-,-]is a symmetric Z, -bilinear form defined over G :

[.,.] is said to be non-degenerate if [z,2] =0Ve=>2 =0.
$1/7s
If4, = Sofye. O it is easy to convince ourselves that

0 * SV
[ ,2] =« 4, 2T defines a non-degenerate symmetric bilinear form in
G. For every subgroup H < G, we define

HL ={zcG|[z,h] =0VheH|.

HL is a subgroup of G. Analogous results to the vector space case
hold for non-degenerate bilinear forms over finitely generated abelian
groups, i.e.

H<K=Hl>KL

Hin Kl =(H + K)L

(Hn KL =HL KL VH,K<@
HllL =H

H| - |HL] = 6], ete.
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Given two groups G and V, both Z,-modules, both with a non-
degenerate bilinear form [- , -], and [-, -], respectively, and given a
group morphism, i.e. a Z,-morphism

g : V— @, then there exists a morphism

Py:G—>Vs.t.Vee@G, VueV
(o (u), 2], =[u,z* (2)], .

We use 1;, L,respectively to indicate orthogonality in ¢ and in V.
The following holds: VH < @&

[Q* (H)] lp =gt (H'Lt)
and VW<V
o (W) = (ot (W)),.

Also, @4 is 1-1 < & is onto

D« 18 onto < @ is one-one.

3. — Construction and identification of effects and interactions
in a factorial design with pseudofaectors

It is well known that if the number of levels s of a factor 4 is
not a prime — say s = r, r, — then the effect of A can be regarded as
if it were due to the effects of two «pseudofactors» A, and A4, at
levels r, and r, respectively and to their interaction 4, X 4,. Also,
given any other factor B, the degrees of freedom for the « pseudo-
interactions» 4, X B, 4, X B and 4, X 4, X B will represent the
interaction A X B. Let 4,, 4,, ..., A, be factors of an experiment
at levels s, ,s,, ..., s, respectively.

It 8 =PI Pt . P
a a 29
Sy = PP PPt . PR a;; = 0
o “mn 5
S =P Pn p; primes
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we can think of factor A4; at s; levels as corresponding to pseudo-
factors

i
AD ... 4D at levels p,

(
1

. )
AD, ... Af) at levels p,

and all their interactions. We want to show that similar results to
those of [8] hold for this type of design.

Consider the elementary abelian group G; of order s,.

Elements of G; will be denoted by vectors z, and will identify
the s; levels of factor A, by the arbitrary choice of a 1-1 correspon-
dence between levels and elements of G;. In G; we can introduce a
non-degenerate symmetric bilinear form [z, ,Y,], = #, 4, Y¥ with 4,
asin 2. and y; = Py Py. .. Py

The group G = @"@G,; is again elementary abelian and a Z,-
module. =1

Treatment combinations can be identified with elements z =
= (%, ,....,%,) of G. For instance if 4 has 4 levels and B has 3
levels, the vector 002 will denote the treatment usually indicated by b,
032, 302, 332 will denote ab, a2 b, a® b in some order etc.

Furthermore, each cyclic group () can be taken to repre-
sent some degres of freedom for a main effect or interaction as fol-
lows : let [- , -], be the non degenerate symmetric bilinear form defi-
ned by the matrix

and let (z )t = {2;[2,2], = 0} = H. Clearly H does not depend
on the choice of the generator .

Denote by T(x) the set of contrasts among «strata» of treat-
ments corresponding to cosets of H in G,i.e. T (x) = set of all real
valued functions such that the sum of their values is 0 (contrasts) and
are constant on cosets of H in G. Thinking of T’ (x) as a vector space,
we talk of independent contrasts (= degrees of freedom) and ortho-
gonal ones.
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Since the number of cosets of (z)Ll; in @ is |G[(x)Le |=|(=z)],
T(x) determines s-1 degrees of freedom where s = order of x.

Define 7 () = set of contrasts among cosets of T (z) in G which
are orthogonal to the ones in T (r. x) for each r dividing s.

It is enough to say that we take those that are orthogonal to the
ones in T (r, x) ... T (r, x) for r,, ..., 7, proper prime divisors of s.

In other words we consider all subgroups (r-2 ) of (2 ). Clearly

T(r.2) =T (2)

since (r-z)<{(x)=(x)L is a subgroup of (r-z)L; hence each
coset of (&)Ll in G is the union of cosets of ()L in G.

Claim : a) the contrasts in 7' () belong to the interaction of
pseudo-factors 4, , 4, ,...., 4; corresponding to non-zero entries
ine=(@,....,%) .

b) Two sets T(x) and T(z') with (« )+ (') are orthogonal,

¢) the sets 7'(x) exhaust all the treatment degrees of freedom.
The proof of these statements does not appear to depend on the use
of pseudo factors, hence a parallel proof to the one outlined in [8]
can be given.

4. — An example

A simple example will help illustrate the theory and notation so
far: a 3 x 6 experiment with factors A and B, and pseudofactors
A, B, B, at levels 3, 3, 2 respectively. We can write the treatments as

000 020 040 : 003 023 043
200 220 240 : 203 223 243 Table I
400 420 440 : 403 423 443

Take z =200:(x)l, = {z:2 = 0} = first row of Table 1. Treat-
ment strata which give 2 d. f. for the main effect of 4 are the rows in
the above table. Similarly taking ¥ = 003 we find one d.f. for B
given by the contrasts between the first half and second half of the
table.

Now let w = 203. Strata for T (w) are cosets of (w)l, =
=1{2:2 +2,=0 mod. 6} = {000,020, 040}, hence half rows in
the above table. But (w ) > (z) and {(w )>(Y ) so T (w) is given by
the contrasts of T'(w) orthogonal to those in T(z) and T(¥). Thus
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T (203) = {e; (000, 020 , 040) — ¢, (003 , 023 , 043) + ¢, (200 , 220 ,
240) — ¢, (203, 223, 243) + ¢, (400, 420 , 440) — ¢, (403, 423, 443),
€, ,6,¢,€ Ry, + ¢, + ¢, =0} gives 2 d.f. for A x B.

. — Plot factors and the design key

Similarly to our construction of ¢ we can construct a group V
whose generators are the ” plot ” pseudofactors. More specifically,
assume the N experimental units are arranged in blocks, replications,
rows, columns, split plots and other groupings. We can assume that
there are n ”plot factors” P,,...,P, each at ¢; levels and each
plot is specified by assigning one of the levels for each P;. Thus we
have V=V, ®...® V,, V, = elementary abelian group of order
q;- Let y, be defined in analogy with y, and similariy for the
matrix A,. Plot effects and interactions are identified as before, by
sets P (?/) YeV.

By deszgn key we shall mean a map ¢ which assigns to each
plot, i.e. each ¥ € V, a treatment combination 2 € G¢. Then gz : V—@G.

Requirement. We want ¢ to be such that it induces a 1-1 corre-
spondence between T (x) and P (Y). We say that P (Y) is the plot
ulias of T (x).

Critical Assumption : We shall consider the case in which @ is
a group morphism.

Then 3z, : G— V s. t.
[0 (W), 2], =[u, 2. @],

Under our condition we can show that (with a slight abuse of
notation)

2 (T (@) = P (¥) wherez =3 (¥)

8o that o, (T ar;)) = y) and the degrees of freedom determined by
x are estimated by contrasts in P Y).

6. — Aliasing, confounding and replications

Under our hypotheses the degrees of freedom for an effect or
interaction identified by () are confounded with blocks if the
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plot alias of  identifies a block effect ¥ . This can be extended to con-
founding with rows, columns, whole plots etc. In analogy with the
results of [7] we can show that in order to design the experi-
ment, we form a subgroup W of G whose elements represent the
interactions we are not interested in and take the orthogonal sub-
group W1, and its cosets as sets of treatments in each block respe-
ctively. W1, will be called the PRINCIPAL BLOCK.

If  is not onto, i.e. not all treatments are actually used in the
experiment, then &, is not one-one, i.e. 32 £ 0 8.t T4 () =0.
Then the d.f. determined by x are aliased with the mean since the
treatment strata for estimating such degrees of freedom are given
by cosets of (0) 1,in V, i.e. the cosets of ¥V in V, i.e. all the elements
of V.

All elements of ker &, are aliased with the mean. They represent
the defining contrasts. More in general, if two elements z , ' belong
to the same coset of ker g4 in G, they are aliased with each other.
Again we can show that given a fractional replication of a design
constructed with the above methods, ker g, = 81, where S = the
set of treatments actually occurring, so that aliased effects and inter-
actions are those represented by subgroups («) with 2z € S4i,.
Conversely, starting from the interactions assumed absent we form
a group H and take Hl, as the set of treatments of the design.

Aliasing and confounding can be present in the same design.

Replications : If @ is not one-one, different plots receive the same
treatment, i.e. the design is replicated. Then &4 is not onto and
there are plot effects that are not aliases of any treatment effect.
Two plots of V receive the same treatment iff they are in the same
coset of ker o in V, so that each treatment combination which
is used in the design is replicated the same number of times. If,
however, we want to confound different d.f. in different replications,
we must change the design key.

Thus problems related to aliasing, confounding and replicating
are translated into finding a subgroup orthogonal to a given one.

It is important to observe that there is a ring isomorphism

Z,— GF (p,) @ GF (p,) ® ... @ GF (p,)

so that every equation of the type # 4,YT = 0 now reads as n equa-
tions, one for each field GF (p,).
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7. — Application of the theory to the construction of new designs

Consider a whole replicate of a 2 X 3 X 4 X 6—experiment.
A design for such an experiment has been given by R. Bailey in [7]
with the cyclic group construction of [5] and the use of Sylow
subgroups. She finds a design with blocks neither too large nor
too small (the block size is 12) such that main effects are totally
unconfounded and such that it confounds the following
AxCQ1)y, 4 xD (1), CxD (1), BxD (2), A X B x D (2),
BxCxD(2), AdXxBxOCxD(2).

Now let 4, C,, C,, D, denote pseudo factors at 2 levels and B,
D, pseudo factors at 3 levels.

Using blocks of size 12, 144/12 — 1 = 11 degrees of freedom
must be confounded with blocks. The experiment may be conceptually
split into two «sub-experiments»; a 2*—experiment F,, with factors
A, 0, Cy, D, in blocks of 4 plots, and a 3>*—experiment F, with
factors B and D, in blocks of 3 plots.

To confound interactions as high as possible in E,, we take 4 X
X Oy X D; and C; X C,x D, : in this way, A x ¢, will also be
confounded. The equations defining the principal block of E;, will be

‘w—{—z” +t =0
over GF (2)
?z’ 42"+t =0

where x, 2/, 27, ' represent the levels of 4, C,, C,, D, respectively.
The solutions are

{(0000), (0011), (1101), (1110)}

To confound a high order interaction in E, we choose B X D, giving
the equation

y +t" =0 over GF (3)
for the principal block, with solutions

{(00), (12), (21)}
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The principal block in the overall experiment will receive treat-
ments

(0,0,00,00), (0,0,03,30), (3,0,30,30), (3,0,33,00)
(0,2,00,04), (0,2,03,34), (3,2,30,34), (3,2,33,04)
(0,4,00,02), (0,4,03,32), (3,4,30,32), (3,4,33,02)

The following pseudo degrees of freedom are confounded with blocks:

A X Cy, x D; (1)

0, X 0y, Xx D, (1) in B,

A x O (1)
and

B x D, (2) in B,
and therefore also

A X B x C; X D, (2)

A X B x Cy, X D; X D, (2)
B x C;x Cy, X D, X D, (2)

i.e. the following degrees of freedom for the overall experiment :

A x 0 (1)
C xD 1)
B xD (2)
A X CxD (1)
BXxO0OxD (2)
AXBXCXD (4)

A comparison of this with the design obtained by R. Bailey shows
that more degrees of freedom for higher order interactions are con-
founded here, which in general is advantageous. R. Bailey’s design
can be obtained as a particular case of the pseudo factor method
taking equations z + 2" = 0 and z +t' = 0 over GF (2).

8. — Final remarks

The method of [4] and [5] differs from the one employed here
because the groups G, and V, are cyclic instead of elementary abelian.
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Elementary abelian groups have more subgroups than any other
group of the same order: thus the introduction of pseudofactors
allows more flexibility in the construction of designs. Besides, they
provide a conceptual link between the «new» and the «old» theory:

by virtue of the ring isomorphism between Z, ,,  , and @™ GF(p;)
i=1

the group construction of factorial designs with pseudo factors
leads us back to Bose’ s finite geometry method. It also suggests
all the possible « intermediate » constructions that can be achieved,
endowing G' with other possible abelian group structures.

What is not clear is in what way the construction depends on
the choice of the bilinear form in @,i.e. whether it is possible to
change the form and obtain meaningful and useful results.

Finally, note that we have not considered the special case of
factors with quantitative equally spaced levels: it has been shown
in [7] that for such experiments, isomorphic designs may give diffe-
rent information on the linear, quadratic etc. components of inter-
actions, depending on how we label the factor levels. Also, designs
have been obtained without the critical assumption that the design
key be a homomorphism : see for instance [11] p. 205 and [6]. In
some cases a degree of freedom for a main effect or interaction is
only partially confounded or aliased in a given replication.
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