@article{RSMUP_1978__59__117_0, author = {Beir\~ao da Veiga, Hugo and Valli, Alberto}, title = {On the motion of a non-homogeneous ideal incompressible fluid in an external force field}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {117--145}, publisher = {Seminario Matematico of the University of Padua}, volume = {59}, year = {1978}, mrnumber = {547082}, zbl = {0433.76001}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1978__59__117_0/} }
TY - JOUR AU - Beirão da Veiga, Hugo AU - Valli, Alberto TI - On the motion of a non-homogeneous ideal incompressible fluid in an external force field JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1978 SP - 117 EP - 145 VL - 59 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1978__59__117_0/ LA - en ID - RSMUP_1978__59__117_0 ER -
%0 Journal Article %A Beirão da Veiga, Hugo %A Valli, Alberto %T On the motion of a non-homogeneous ideal incompressible fluid in an external force field %J Rendiconti del Seminario Matematico della Università di Padova %D 1978 %P 117-145 %V 59 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1978__59__117_0/ %G en %F RSMUP_1978__59__117_0
Beirão da Veiga, Hugo; Valli, Alberto. On the motion of a non-homogeneous ideal incompressible fluid in an external force field. Rendiconti del Seminario Matematico della Università di Padova, Tome 59 (1978), pp. 117-145. http://archive.numdam.org/item/RSMUP_1978__59__117_0/
[1] Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), pp. 769-790. | MR | Zbl
,[2] Vanishing viscosity in Cauchy's problem for hydro-mechanics equations, Proc. Steklov Inst. Math., 92 (1966), pp. 33-53 (previously in Trudy Mat. Inst. Steklov, 92 (1966), pp. 31-49 [russian]). | MR | Zbl
,[3] Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit, Math. Z., 37 (1933), pp. 727-738. | MR | Zbl
,[4] Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1950-51), pp. 213-231. | MR | Zbl
,[5] On Classical Solutions of the Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200. | MR | Zbl
,[6] Sur les mouvements des liquides illimites, C.R.A.S. Paris, 194 (1932), 1892-1894. | JFM
,[7] Neuere entwicklung der Potentialtheorie. Konforme Abbildung, Encycl. Math. Wiss., IIC 3 (1918), pp. 177-377. | JFM
,[8] Well-posedness of the equations of a non-homogeneous perfect fluid, Comm. Partial Diff. Eq., 1 (1976), pp. 215-230. | MR | Zbl
,[9] Nonstationary Plane Flow of Viscous and Ideal Fluids, Arch. Rat. Mech. Anal., 27 (1967), pp. 329-348. | MR | Zbl
,[10] Existence theorem for the flow of an ideal incompressible fluid in two dimensions, Trans. Amer. Math. Soc., 42 (1937), pp. 497-513. | JFM | MR
,[11] On the uniqueness of compressible fluid motions, Arch. Rat. Mech. Anal., 3 (1959), pp. 271-288. | MR | Zbl
,[12] Soluzioni classiche dell'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile, Ricerche di Mat., 26 (1977), pp. 301-333. | MR | Zbl
,[13] Un theorème sur l'esistence du mouvement plan d'un fluide parfait, homogène. incompressible, pendant un temps infiniment long, Math. Z., 37 (1933), pp. 698-726. | MR | Zbl
,[14] Non-stationary flows of ideal incompressible fluids, Zhur. Vych. Mat. i Mat. Fiz., 3 (1963), pp. 1032-1066 [russian]. | MR | Zbl
,[15] A two dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain, Amer. Math. Soc. Translations, 57 (1966), pp. 277-304 (previously in Mat. Sb., 64 (1964), pp. 562-588 [russian]). Added in proof: the analytic case in compact manifolds without boundary was studied in | MR
,[16] Solutions analytiques de l'equation d'Euler d'un fluide incompressible, Seminaire Goulaouic-Schwartz, 1976-77 (Paris). | Numdam | Zbl
- ,