@article{RSMUP_1980__62__129_0, author = {Be\v{c}v\'a\v{r}, Jind\v{r}ich}, title = {Abelian groups in which every pure subgroup is an isotype subgroup}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {129--136}, publisher = {Seminario Matematico of the University of Padua}, volume = {62}, year = {1980}, mrnumber = {582946}, zbl = {0436.20035}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1980__62__129_0/} }
TY - JOUR AU - Bečvář, Jindřich TI - Abelian groups in which every pure subgroup is an isotype subgroup JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1980 SP - 129 EP - 136 VL - 62 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1980__62__129_0/ LA - en ID - RSMUP_1980__62__129_0 ER -
%0 Journal Article %A Bečvář, Jindřich %T Abelian groups in which every pure subgroup is an isotype subgroup %J Rendiconti del Seminario Matematico della Università di Padova %D 1980 %P 129-136 %V 62 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1980__62__129_0/ %G en %F RSMUP_1980__62__129_0
Bečvář, Jindřich. Abelian groups in which every pure subgroup is an isotype subgroup. Rendiconti del Seminario Matematico della Università di Padova, Tome 62 (1980), pp. 129-136. http://archive.numdam.org/item/RSMUP_1980__62__129_0/
[1] J. M. IRWIN, On quasi-essential subgroups of primary abelian groups, Can. J. Math., 22 (1970), pp. 1176-1184. | MR | Zbl
-[2] Infinite Abelian Groups I, II, Acad. Press, 1970, 1973. | Zbl
,[3] Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem. | MR | Zbl
- - ,[4] E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460. | Numdam | MR | Zbl
-[5] On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118. | MR | Zbl
,[6] On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75. | MR | Zbl
,[7] KULIKOV, Obobščennye primarnye gruppy, Trudy Moskov. Mat. Obšč., 1 (1952), pp. 247-326. | MR | Zbl
[8] Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160. | MR | Zbl
,[9] Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164. | MR | Zbl
,[10] Centers of purity in abelian groups, Pacific J. Math., 13 (1963), pp. 215-219. | MR | Zbl
,[11] Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27. | MR | Zbl
,[12] Groups with special properties, Proc. Nat. Inst. Sci. India, A 31 (1965), pp. 513-526. | MR | Zbl
,[13] On a certain purification problem for primary abelian groups, Bull. Soc. Math. France, 94 (1966), pp. 207-210. | EuDML | Numdam | MR | Zbl
- ,[14] On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110. | MR | Zbl
,[15] Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.
,