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Boundary Values of Holomorphic Functions
and Cauchy Problem for ~ Operator in the Polydisc.

MARIO LANDUCCI (*)

0. Introduction. 
,

In the first part of the paper (~ 2 ) the boundary values of holo-
morphic functions on the polydisc L1 and continuous up to the bound-
ary are studied: in particular we give the necessary and sufficient
conditions in order that a continuous function on o6 (prop. 2.4) or

on 8A (prop. 2.6) be the boundary value of an analytic function on J.
Then (§3) it is proved the existence of a solution of the 9-problem,

which is uniformly bounded with its derivatives (theorem 3.1): (in
the proof of the theorem the integral representation formula stated
in [5] is basic).

The careful study of this solution (necessarily unique) allows to
study, instead of Cauchy problem for i operator, another equivalent
problem (see § 4). By this method it is possible to give, for the

Cauchy problem, an existence theorem with estimates and further-
more the integral representation of the solution,

(*) Indirizzo dell’A.: Via Caldieri 3 - Firenze (Italia).
University of Modena.
The author is a free collaborator of G.N.S.A.G.A:C.N.R.
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1. Notations.

Let d be the unitary polydisc in C~ centred in (0, ... , 0 ),

We shall denote with 8A its boundary, i.e.

and with 9 its Chilov boundary, y

If u E L2( S) and I = (i1, ... , in ) is a multindex, will be the Fourier

coefficient of u of index I, i.e.

I ~ 0 will mean 
If u is a differentiable function will be as usual

- {space of forms of type with coe*fficients in 

functions L2(4 ) with derivatives of order ~ s

in 

0(A ) = {holomorphic functions on L1}.
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2. Boundary values of holomorphic functions.

DEF. 2.1. Let u E L2(aj ) and f a (0, 1) form whose coefficients
are in We say that

= f in weak sense on ad

if

for every

DEF. 2.2. We say that u satisfies

in weak sense on 9

if for every 10.

LEMMA 2.3. Let C(ad ) such that Ju = 0 in weak sense on ad .
Then, for every j = 1, ... , n and ... ,  1,  1, ... , IZnl ( c 1,
we have

In particular dbU = 0 (in weak sense).

PROOF. Consider

with k ~ 0  1, ... , IZnl  1 ~.
Then iT - 0 for every 11’ and by hypothesis,
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But then F(Z2’ ... , = fU(Zl’ 7 Z2 dZ1 = 0 a.e. : hence, as F is

continuos, F = 0. 
Iterating the argument, with convenient cp, we get the thesis.

For continuous boundary values of holomorphic function the fol-

lowing proposition holds

PROP. 2.4. Let a E C(S) then u has an analytic extension to 4
if and only if 0 in weak sense on 9.

Furthermore the analytic extension 0 is defined and continuos
on 84 and satisfies J,0 = 0 in weak sense on 84.

PROOF. Nee.: obvious.

take

and we immediatly have

(it is sufficient to use Fejer’s theorem, see for example [2]). For the

second part of the proposition if is sufficient to observe that, in virtue
of Lemma 2.3 and the previous part, if = 1, ... , 1,

we have

So 0 is defined and continuous on a4 and satisfies = 0: in fact
on each component of 84 , ¡wll  1, ..., = 1, 1, 7 Iwnl  1

it is possible to egpand u in power serie of wi .
The following basic lemma holds

LEMMA 2.5. Let s.t.

1) v=0 on 9

2) = 0 in weak sense on ad

Then v = 0 on 84.

PROOF. Let 3j8 any (% - I , % - I ) differential form in Cn-l, where
has compact support on IZll  1, ..., ( C 1, and a the (n, n - 1)
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differential form defined by, 0

We have 1« - 0, for every and hence, by hypothesis

This means,

that is

but then V(Zl, ... , zn_1, 0 ) is a holomorphic function of zl, ... , zn_1 and
continuous on |zn-1|  1; so, as by hypothesis it is ident-

ically 0 on Iz¡1 = 1, ... , 
= 1, we have

Analogously, y taking

we get ... , 1 ) = 0 and so on.
Finally we deduce v = 0 on Iz,, = 1,  1, i = 17 ... , n - 1.

with a suitable choice of a we have that v is 0 also on the other com-

ponents of ad and hence the thesis.
An important consequence of the lemma is

PROP. 2.6. U E C(3/)) has an analytic extension to J if and only
if abu = 0 in weak sense on 8A.
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PROOF. ~

Nec.: obvious.

Juff.: By Lemma 2.3 we have Ju = 0 in weak sense on 9 so the
holomorphic function

is such that

In virtue of Prop. 2.4 0 is defined and continuos on ad and satisfies
J,0 = 0 in weak sense on 84 : from this the continuous function
v - 0 - u fulfils the hypothesis of Lemma 2.5 and we have

3. Some estimates for the ~-problem in the polydisc.

From now on, L1 will be the unitary polydisc in C2 centered in (o, 0).
We have:

THEOREM 3.1. Let d-closed.
Then the 3-equation

has a solution u which is and satisfies

PROOF. Consider the d-problem,
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where 8 E (0, 1) and (since f is d-closed, fe is still d-closed).
As f E is smooth in a neighborhood of Lf, (1) always admits solution v,

which is smooth in a neighborhood of 4 (see for example [4]).
In [5] has been showed that, if the following integral

representation holds,

where is a function bounded uniformly by 
Hence, appling (2) to .ve, we get that

is still a solution of (1), bounded uniformly by (because
s 
for every 8) which satisfies the fundamental relation

(see also [5])

for every (WI’ 202) E 4.
To finish the proof of the theorem, we need the following lemma,

LEMMA 3.2. If v(z) E and satisfies

for every (Wl, W2) E L1, then

for every integer s&#x3E;0.

PROOF. For s = 0 see [5].
Let s = 1: if we apply (2) respectively to and dv/dw2
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we get

and

Hence to get the thesis it is sufficient to have the estimates

We shall do it for J, (the proof for J, is completely analogous).
By (4) we have that

(we have used that, on )zi) = 1, now, (2) applied to
- gives the first estimate in (5). To get the thesis for every s,
it is sufficient to iterate the argument.

Let us come back to the proof of theorem 3.1.

Lemma 3.2 is applicable to ue: then we have,

Setting s = we have obtained a sequence such that

where C’ is independent of k.

By Banach-Saks theorem (see [1]), we can extract a subsequence
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of ~~k~, again denoted with 9 s.t.

So u is a solution of Ju - f and satisfies, in virtue of (6), the estimate (b).
In particular, as has all the derivatives bounded it is C-(,j).
Let V(z) be a C2(3) function, then an elementary argument

shows that

then we have

But this means, by (4),

for every (wl, ~,v2) E ~. Q.D.E.

REMARK. The argument used in the proof gives the same result
also in the case of f bounded with its derivatives.

4. Cauchy problem for a-operator.

Let us consider the Cauchy problem for J in 4, that is to find a
function a E CS(4 ) such that

where f E Co 1(d ), a f = 0, and satisfies the necessary com-

patibility condition J,g = f in weak sense on 3/).
Instead of problem (A), we want to study the following problem (B),
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of finding a function fl E 0’(3), such that

As in the case of strictly pseudoconvex domains, where Henkin’s
kernel takes the place of Cauchy kernel (see [6]), we have equivalence
between problem (A) and (B). In fact the following lemma holds,

LEMMA 4.1. Solvability of problem (.~. ) is equivalent to solvability
of problem (B).

PROOF. (A) ~ (B).
It is enough to solve the Cauchy problem

where u is the solution of the 3-problem d’U = f given by theorem 3.1:
~8 is then solution of (B).

Consider the problem (B) given by

Observe that

is continuous with its derivatives in 4 because it is equal to



33

and g-u is the boundary value of a holomorphic function (see prop. 2.6).
Since oc satisfies, for every (wl, w2) E d, the identity

and furthermore

we immediatly have

and this implies, by lemma 2 . ~,

and this finishes the proof.
For problem (B) the following theorem of existence and unicity

holds,

THEOREM 4.2. Problem (B) always admits a unique soluti~on
which is and satisfies the estimate

for every k ~ s (where k ) is exactly given by thm 3.1 part (b)).
PROOF. Let u the solution of 8u = f given by theorem 3.1.
Then if we take,

by part (a) of theorem 3.1 we have

and by part (b ) the estimate (7).
From theorem 4.2, in virtue of lemma 4.1, we get
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THEOREM 4.3. The Cauchy problem for J in the polydisc L1 c C2

where f E ~f = 0 and gE C_8(ad ) s.t. = f in weak sense

on ad, has unique solution a E which satisfies the estimate,

for every 

REMARK. The estimate follows by maximum’s principle, observ-
ing that

and g - u is the boundary value of a holomorphic function.

’ 
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