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Minimal Equations,
Global Reducibility of Holomorphic Functions,
and Relative Rationality of Analytic Sets.

CHIA-CHI TUNG (*)

SUMMARY - Given a complex space Y and an analytic subset S of Y X Ck
two natural questions may be asked: (1) When is S locally given by the
common zeroes of holomorphic pseudopolynomials defined over open sets
in Y ~ (2) If f is a holomorphic function on Y X Cx with zero set S, when
can f be factorized in terms of the minimal equations defining the

branches of BY The main results of this paper provide sufficient condi-
tions which assure positive answers to (1) and (2).

Let X be a (reduced) complex space of pure dimension m &#x3E; 0.
An analytic subset S of X is called an (analytic) hypersurface if S has
pure codimension 1. .X be a hypersurface. A holomorphic
equation g = 0 on an open subset U of ~Y is called a minimal equation
of ~S on U iff (i) S r1 U = Z(g) (the zero set of g); (ii) g has 0-multi-
plicity 1 at every simple point of S in U. If U consists of normal points
only, the above definition amounts to requiring that the germs of 9
generate all stalks of the (nullstellen) ideal sheaf of S over U (cf.
Theorem 1.3).

Let Y be an irreducible complex space of dimension p &#x3E; 0 and Z
a hypersurface in Y X P. Assume the projection map y~ : Z -~ Y has
strict rank p ( [1, p. 17]) and the set is thin
on Z. Set Y* = Yreg - Zo = Z r1 1p-l( Y*). Stoll [1, 5.1] showed

(*) Indirizzo Bering Str. 4 - Universität Bonn - 53 Bonn 1,
West Germany.
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that on Y* X C, the fiber product

(where v(y; w) denotes the multiplicity of V at w) is holomorphic
with zero set Zo . Geometrically ( 0.1 ) implies, when restricted to the
fibres of the projection ~: the function g attains the
minimal 0-multiplicity at every that is,

It seems reasonable, therefore, to expect that (0.2) would give a char-
acterization for a holomorphic equation g = 0 (on a product space)
to be the minimal equation defining its zero set. The precise (in fact
somewhat weakened) conditions are given in Theorem 2.3 and Lem-
ma 2.1. Furthermore, with Z as above, for every point in Ynorm -

YsingldimZlI= 1}, a neighborhood V’ and a minimal equations
g = 0 on can be constructed, and (0.2) remain
valid on all fibres Z(g)v 0 (see Theorem 4.5).

Let Y be a complex space of dimension p ~ 0. The above consider-
ations give rise to two natural questions: (1) When is an analytic
set 8 in YxCk locally given by the common zeros of holomorphic
pseudo-polynomials defined over an open subset of Y! (Such ain S
is said to be rational over Y). (2) If f is a holomorphic function on Y X Ck
whose zero set is rational over Y, can f be factorized in terms of the
minimal equations defining the branches of Z( f ) over an open sub-
set of Y?

The rationality question is treated in § 3. If 8 is a hypersurface
and if Y is pure dimensional, the following conditions are equivalent
(Theorem 3.2): Let S denote the closure of 8 in and
s = dim S.

(i) ~S is analytic in Y X 

(ii) S is rational over Y.

(iii) The slice Sv is properly algebraic or empty for all y in a
set of positive (Hausdorff) 2p-measure in every branch of Y.

(iv) has zero 2s-measures in 

If S has positive codimension, then (i) =&#x3E; (ii) =&#x3E; (iii), and (iv) =&#x3E; (i)
provided 8 is pure dimensional. The assertion « (i) ~ (ii) » is a con-
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sequence of the relative Chow’s Theorem (see Fischer [3, 1.3]). The

proof given in Theorem 3.1 is, however, based on the relative G~A.G.A.
theory of Grauert-Remmert [4]; this proof also yields the Chow’s
Theorem for the reduced case.

Possible answers to question (2) are provided by Theorem 4.2,
Corollaries 4.3 and 4.4. To mention the main result, let Y be a con-
nected Stein manifold of dimension p with H2( Y; Z) = 0; assume S
is a hypersurface in YxCk satisfying condition (iii) above with

rank Ry|S = p being the projection: Y X Ck &#x3E; Y). Then the set

id ( S ) = 0} is a principal ideal. It follows that if
with Z(f) = 8, then f can be factorized up to a unit in

the form where every gj is a pseudo-polyno-
mial defined over Y, and the set gives all branches
of ,S on which RY attains maximal rank p. If f is a generator of id (S),
then all Å; = 1 and 0 gives a minimal equation of ~S.

The author wishes to thank Professor 0. Forster for suggestion
the use of [4] in proving the relative Chow’s Theorem, and Profes-
sor J. Becker for observing that « (ac) =&#x3E; (d) » in Theorem 3.1.

1. - Divisibility of holomorphic functions.

If U is an open set in X, let c~( U) _ HO(U, Two functions

I, 9 E O(X) are called equivalent ( f ~ g) on .X if f /g E O*(X). If

~: .X~ Y, f: ~-~C, M C X and y c Y, set ~y= Mnn-1(y), f¡Xv
(provided ~~ ~ ~); also define

Some general assumptions shall be stated here for later reference.

X - Y is a holomorphic fiber space with pure fiber dimen-
sion m - p &#x3E; 0 over a complex space Y of pure dimension p &#x3E; 0.

(G2) Y is a locally irreducible complex space.

(G3) n: X -+ Y is a locally trivial holomorphic fiber space over a

complex space Y of pure dimension p &#x3E; 0 with irreducible fibers.

( G~ ) Y is a connected Stein mainfold of dimension p with H2( Y ; Z) = 0 .
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Unless otherwise stated, assume (G1). 7&#x26;-simple iff

d(f) is either empty or almost thin of codimension 2 in Y ([1, p. 14]).
If (G3 ) holds, the set d(f) is analytic in Y by [12, Lemma 1.1] and, for
f = /1/2 with f is R-simple iff so are f 1 and f 2 .

Let A pair is called a reduc-
tion of f (over Y) iff f = (a* gg)g on X. Two reductions (g, 99), (g, §5)
of f are called equivalent iff there exists u E 0*(Y) such that 99 = u§5
and g = A reduction (g, q) of f over Y is called a simpli-
fication of f (w.r.t. yr) iff g is R-simple.

Let S be a hypersurface in X and y = R/S. Define

If yr has irreducible fibers, then

The hypersurface is called a-strict if 1p has strict rank p.

LEMMA 1.1. Assume (G3 ) . Let with Z = Z( f ) # 0.

(1 ) Z is an-strict hypersurface in X iff f is R-simple. 

(2) Assume codim Z ~ 0, rank a IZ = p, and f has a simpli.fica-
tion (g, 99). Then Z(g) is the largest n-striet hypersurface in X on
which f vanishes. ,

PROOF. If Z has pure codimension 1, (1.1) implies that d(f) = d(Z).
Therefore, if Z is an-strict hypersurface, f is n-simple by [1, 1.24].
Conversely, if f is a-simple, then codim %(/)&#x3E; 2, which implies that
Z is a hypersurface with thus the restriction

has strict rank p. Now assertion (2) also
follows. Q.E.D.

Define

Then

Let D be a divisor on X and S(D) = the support of D. For

y E Y S(D)’ a divisor D 1/ on Xy can be defined as follows: If f is a mero-
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morphic function on an open set with divisor (f) = then

D is called effective iff locally D is represented by holomorphic func-
tions. If X is normal, then D is effective iff is effective.

Let g E t~(.X) - ~0~. Denote by v(g; w) (resp. vo(g; w)) the mul-
tiplicity (resp. 0-multiplicity) of g at (see [10], [11]).

THEOREM 1.2. Assume (G1)-(02) and X is normal. Let D be a
divisor on X. Assume (i) S = S(D) is R-strict; (ii) Y, contains a
dense subset Q such that for each y c- Q, DlI is effective. Then D is

effective.

PROOF. Let W be a non-empty, open subset of 8. Then V = y(W)
is open in Y. It follows from (1.2) that Y r1 Ys:Fø. Hence

Take Wo E Sreg. W.o.l.g. assume .X is non-singular. Choose a

neighborhood U of wo in X - E(y) such that U is biholomorphic to
an open ball in Cm U = 8reg f1 U is connected. There exist

relatively prime holomorphic functions I, 9 on U with 
Then codim Z( f ) f1 Z(g) ~ 2. Suppose g(wo) = 0. Then f is non-

vanishing on a neighborhood U’C U of WOo By (1.3), ~S r1 U’ contains
a point w with = For such (w, y),

hence Dy is not effective, y a contradiction! Therefore, f jg E 
It follows that D is effective on X. Q.E.D.

THEOREM 1.3. Assume (G1), where X is a normal space, and R has
normal irreducible fibers. Let f, 9 E O(X). Assume (i) g is R-simple;
(ii) there exists a dense subset Q of Yreg - d(g) such that if y E Q,

PROOF. Observe that by Lemma 1.1-(~.), codim Z(g) n &#x3E;2.
Therefore it suffices to prove the holomorphy of fig on n-1(Yf) U
U (X - Z(g)~. In view of Theorem 1.2, one needs only show that f y/gv
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is holomorphic for each y E Q. This follows from Stoll [1, p. 267] (or
Whitney, [13, 9J, p. 29]). Here a simple proof of this lemma (for a
normal space) using the Weierstrass division theorem and results
of [11] shall be given.

LEMMA. Let U be a normal space and Assume
Z = Z(g) has positive codimension and for all WE Zreg r1 

Then f/g E O(U). 

PROOF. Assume and In terms of a local

patch of U, one can identify a neighborhood N of a with an open set
such that (i) a = 0 E Cm; (ii) for some open polydiscc

g° cc H, Z r1 (G XHo) = Z f1 N. Then s = I E H~ = const.
for all (where = g(z; C)) ([10, Thm. 3.7]). By the division
theorem, there exist and with deg r  s (if

such that

There exist thin analytic subsets A of Z r1 N and A’ of G such that
the projection P : (Z r1 N) - A -~ G - ~.’ is locally biholomorphic. Take
(z, Then P is a minimal slicing map of g at (z, b)
([11, 2.1.7]): Thus

Now

If (1.4) implies that a contradiction! Thus h =

Since codim A ~ 2, h is holomorphic on N. It fol-
lows that Q.E.D.

LEMMA 1.4. Assume (G3) and the fibers of i are normal. Let

t {0}.
(1) If Y is normal and codim Z( f ) &#x3E; 0, then any two simpli-

fications of f are equivalent.

(2) If (G4) holds, then f admits a simplification w.r.t. ~.
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PROOF. (1) By Grauert-Remmert [5, p. 197, Satz 14], X is a
normal space. Let (g, 99), (g, ~) be any two simplifications of f w.r.t. ~.
If Yf, on X’II. Hence Theorem 1.3 asserts that the quotient
h = glg c- l~ ~ (.X ) . Clearly on = Therefore, ex-

tends to a function u E 0*(Y), thus proving the equivalence.
(2) By [12, Lemma 3], w.r.t. the map 

has a simplification (g, 99). Since X is normal, (g, ep) extends to a
simplification of f . Q.E.D.

REMARK. Assume Y is a normal space and g E c~ ( Y) [tl, ... , tk]. Then
lemma 1.4-(2) implies that g is ny-simple iff the coefficients ap (p 
of g induce coprime germs in for every y E Yreg .

2. - Minimal equations.

Throughout this section assume (G1)-(G2) with p &#x3E; 0. Let J
be the set of all w E X at which n is locally equivalent to a projection
([11, § 1.2]). Let S be a hypersurface in X. If f E with Z’( f ) = S
and if w E there exists a neighborhood U of w in X such that the
junction f ) : U - Y X C is q-fibering with q = m - p -1, hence the
multiplicities v((~, f); w), w) are defined ([11]).

LEMMA 2.1. Assume 8reg ç T(a), and g = 0 is a minimal equation
of S. If q &#x3E; 0, assume X, Y are non-singular. Then for all w E 

PROOF. By [11, 2.2.2], g is projective at every simple point of S.
Let w E and y = a(w). Then [11, 1.2.4] (if q = 0) or [11, 2.2.7]
(if q &#x3E; 0 ) imply that

LEMMA 2.2. Assume Let f E with tiS = 0.

(1) If q = 0, then for all 

(2) If q &#x3E; 0, assume .X, Y are non-singular. Then (2.2) remains
valid for all W E Breg .
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PROOF. If q = 0, (2.2) follows from [11,1.1.4 and 1.2.4]. Now
assume q &#x3E; 0 and X, Y are non-singular. Let v E Sreg. Choose an

(open) neighborhood )7 c X of w biholomorphic to an open ball in Cm.
Then S r1 U admits a minimal defining equation g = 0 on U. By (2.l ),
Theorem 1.3 and [11, 2.2.7].

THEOREM 2.3. Let D be a divisor on X such that the support S
of D is R-strict and 8reg ç T(a). If q = 0, assume X is normal; if q &#x3E; 0,
assume X, Y are non-singular. Assume there exists a dense subset Q
of YS such that for each y E Q, Dy is effective and

Then D is the minimal effective divisor with S(D) = S.

PROOF. Taking W = X,,, Breg, ( 1.3 ) shows there is a point w eW
with y = 1p(w) E Q. Let U be a neighborhood of w in Xo = - E(y~)
such that S r1 U is defined by a minimal equation g = 0 on U and
jD)!7= ( f ) for some Let h = Then

By (2.1) and (2.3), w) = 0. Hence fIg is invertible holomorphic
on a neighborhood of w. Then DIXO gives minimal local equations
defining ~’ r’1 Xo . Since E(1jJ) u Xi has codimension ~ 2, D gives
minimal local equations defining S. Q.E.D.

3. - Relative rationality of an analytic set. 
’

Let Y be a complex space of dimension p. A subset lYl of YxCk
is called relatively rational iff M is the solution set of a system of
pseudo-polynomial equations

where c~ ( Y) ; such a gj is called rational over Y.
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Let E --~ Y be a holomorphic Ck-bundle over Y, and M an analytic
subset of E. Then M is said to be national over Y iff, in terms of local
trivializations of E, .~ is (locally) relatively rational. Observe that
the local relative rationality of ~l does not depend on the choice of
the local trivialization of E.

Define R = and E The fiber bundle E # Y
is called the projective completion of E. There exist natural biholo-

morphic imbeddings of E, resp. P(E), into E, such that R =_.E U P(E)
and E r1 P(E) = If W ç E, set r1 P(E). Let Xl be the
closure of .~ in R, and s = dim M.

Consider the following conditions:

( a ) if is rational over Y.

(b) is properly algebraic or empty} is of

positive 2p-measure ([12, p. 399]) in every branch of Y.

(c) has zero 2s-measure in Ë.

(d) is analytic in .E.

THEOREM 3.1. Assume s  p + k. Then (d) =&#x3E; (a) =&#x3E; (b); more-

over, y if M has pure dimension s, then (c) =&#x3E; (d).

_ 

PROOF. Let be a local trivialization of
R such that (under identifications) E( U) = = U X Pk
by t1, ... , tk ) 4- (yi ; [1 ... , The hyperplane section bundle
over Pk lifts to a line bundle 8r --~ U X Pk by the projection: U X Pk --* Pk
Let F denote the sheaf of germs of holomorphic sections in H and

n

set 

Assume M is analytic in E. Let G5 be the ideal sheaf of 

n R(U) over Since the space 7

(g @3’") corresponds to the subspace of those sections of ~n)
which vanish on Thus to G5 there is
associated a homogeneous pseudo-polynomial

vanisshing on M u with coefficients a, E O(U).
Let yo E U and TTa be an open neighborhood of yo with compact

closure in U. According to Grauert-Remmert [4, Satz for suf-
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ficiently large n E Z(0, the coherent sheaf E5 &#x26; a--(V, X is simple
w,r,t, the projection Thus a neighborhood 
of y,, and finitely many sections G5 0 an) (j = 1, ...l)
can be selected so that c~l, ... , Ji together generate every stalk of

over VXPk.
Take W E U X Pk. Let 3w be the ideal sheaf of w over 

There is an exact sequence

Taking n sufficiently large, the coherent sheaf Ox E5 (D an is B-simple
w.r.t. T ([4, p. 416]). Then there exists a neighborhood basis {W}
of w such that for every W,

Hence, given WE(VXPk) - Mv, at least one 0’; does not
vanish at w. Let ~’~ be the homogeneous pseudo-polynomial asso-
ciated to 0’;. Then on V x Ckthe solution set of the system of equations

is precisely This proves the assertion (d) =&#x3E; (a).
Assume ~ is rational over Y. Let Mu be defined on E( U) by the

equations (3.1) with a,,,, E c~( U). Then the set

in thin analytic in U. Hence (b) follows. To prove (d), observe that
the homogenized system of (3.1) defines an analytic subset Z of E( U)
with Hence by Narasimham [7, Prop. 4’, p. 71],
Mu is analytic in E( U). This yields the analyticity of M.

Now assume M is pure s-dimensional and condition (c) holds.
Take w In terms of a local patch of E at ~,v, the extension theorem
of E. Bishop [2, Lemma 9] shows that if is analytic at w. Therefore (d)
follows. Q.E.D.

THEOREM 3.2. Assume Y has pure dimension p. Let ~1 be a hyper-
surface in E. Then the above conditions (a)-(d) are equivalent.



137

PROOF. It remains to prove that (b) ~ (c). This follows from

[12, Thm. 1.2]. Q.E.D. ,

For later use, some general properties of the counting function
of light holomorphic maps shall be provided here.

Let Y, Q be complex spaces of pure dimension m, p, q resp.
with m = p + q. Let T: M-Q be a holomorphic p-fibering and

f : ~lVl --~ Y be continuous. If and set 

Gt = Assume Y is locally irreducible and, for
each the map is holomorphic. 

_

Take (a, b) E Y X Q_. Let G 9 X be an open set. If G is compact
with Gb - ~. Then Gt = ~ for all (y, t) in a neighborhood of (a, b)
([11, 1.1.5]). Now assume dim Define

Assume also: 1) G is compact with Gb ~ !~ ; 2) 3) Ma
5(T). Then there exist open sets G’, G" in G such that Gt C G" cc G’
and is light along fibers of ( [1X,1.1.1] ). One can choose open
connected neighborhoods A of a and B of b with (G - G") r1 r1

r1 z^1(B) _ ~ ([11, 1.1.5]). Then by [11, 1.2.17 and 1.2.4],

(3.2) nf(Gt; ~) = const. &#x3E; 0 ,

for all ( y, t ) E A x B. Therefore

(3.3) itf (a, b)  + oo ~ nf attains a local min. at (a, b) .

LEMMA 3.3. Assume ft is a finite map for all t E and 

Then the set

is open, dense Also, U is the largest open set in Y X Q such
that setting 1I’ = z(w) ) E U~, the map (f, r) = U’ --~ U
is proper.
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PROOF. Let W ~ ~ be an open subset of Y X Q. Define yY(r) =

1(y, t) E W/n,(y, t) cr~.. Then W = U W(r). Since, for some r,
W(r) has non-void interior, (3.3) shows that U r1 ,PP ~ ~. Hence U is
dense in Y X Q. Using (3.2), it can be shown that a point (y, t) of
Y x Q is in U iff it has a neighborhood J X H C Y X Q such that r1

r1 T-l(H) has compact closure in ~l. From this the second assertion
follows. Q.E.D.

REMARK. 1) It follows from (3.3) and the denseness of U that
2) If f : M - Y is a light holomorphic map

with n,(M; y ) locally constant on Y, then f is proper.

4. - Global reducibility of a holomorphic function.

Let n : Y be a holomorphic Ck-bundle over a complex space Y.
The first part of the following result generalizes a theorem of Ronkin [9]

THEOREM 4.1. Assume Y is normal, irreducible, gj E {0}
(j = 1, 2) and f = gl g2 : Assume f is (locally) rational over Y. Then (1)
there exist P~ E ( ~ = 1, 2) with such that f = P1P2 and
each P ~ is rational over Y; (2) if gl is rational over Y, so is g2.

PROOF. (1) Since Z( f ) = Z(gi) U Z(g2), it follows from [12, Thm. 1.1]
that there exist Pi E O(E) (j = 1, 2) with P~ rational over Y and

Letîi=ulu2. The set

= Ylîill = const-I

is analytic in Y ([12, Lemma 1]) and contains Y . Hence = Y.
Then ii = n*u for some 0*(Y), from which the conclusion follows.

(2) Write f = P,P, as above. Then c(P1/g) = Y. Hence g2 =

= P1P2/g1= for some Q.E.D.

In Theorem 4.2 and Corollary 4.3, assume (G4) and let S be a hyper-
surface in E. Define id (S) _ ~ f E = 0}.

THEOREM 4.2. Assume .A (~S) has positive measure in Y. The id (S)
is a principal ideal with a generator g having the following properties:

( 1 ) g = 0 is a minimal equation of S, and g admits a simpli-
cation (#, ~) with g = ho + ... + hn(hn =Ø= 0), the h; being homogeneous
of degree i on E and (hj, ~) uniquely determined up to equivalence.
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(2) Assume R/S has rank P. Then a) g = 01 ... where each
is n-simple, irreducible, and rational over Y of positive

degree, and the set ~Z(gl), ... , Z(gr)) gives all branches of Z(g) ; b) if

f E with Z(f) = S, there exist 99 E 0(Y, E t~*(E) and integers
2i &#x3E; 0 ( j = ~, ... , r) such that

PROOF. (1) Since E is Stein with .H2(L~’; Z) = 0, S has a minimal
equation g = 0 on .E. By [12, Thm. 1.1], one can choose g to be
rational over Y. Let (g, §5) be a simplification of g w.r.t. n. Then 9
is rational over Y (Thm 4.1-(2)); hence [12, Thm 1.1] yields an ex-

n

pansion where hj is homogeneous of degree j on E and
~=0

Now Lemma 1.4-(1) implies the uniqueness of the 

(2) Let S = Z(g). Every branch Z, of 9 has a minimal equation
f j = 0 on E. Since the quotient Theorem 4.1-(1) shows

has non-void interior. Then (1) gives a rational minimal
equation 0 of Zj. Clearly gj in a-simple, irreducible on E of
positive degree. Also, 9 consists of finitely many branches, say

..., Zr, where Zj = Z(gj). The quotient ro = glgl ... gr E and

Z(m) n Brei = 0. Hence m = n*v for s ome v E 0*(Y). Replacing gl by
rogt, the assertion a) follows.

Now assume f E with Z(f) = S. Let ( f , g~) be a simplication
of f . By Lemma 1.1-(2), Z( f ) = ~. Let Aj be the 0-multiplicity
of ~ at a point of Then This

proves b). Q.E.D.

COROLLARY 4.3. Let f G 0(E) - {0} with rank = p. Assume
the set R(f) = lb E is rational} has positive measure in Y. Then f
has a simplification (4.1) with u = 1.

PROOF. According to [12, Thm 2.2], f is rational over Y. The-

orem 4.1-(2) asserts that in (4.1) the unit u is expressible in the form
for some v E 0* ( Y) Replacing by ggv the conclusion

follows. Q.E.D.

COROLLARY 4.4. Let Y be a complex manifold, /e O(Y)[t1, ... , tk]
and S = Z( f ). Assume b E Y,. Then there exist a neighborhood V
of band gj E c~ ( Y) [t1, ... , tk] with deg &#x3E; 0 for j = 1, ... , r such
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that (i) 91." gr = 0 is a minimal equation of Sk = S n 

(ii) ~Z(gl), ..., Z(gr)~ gives all branches of 8y; (iii) (by taking germs of
.coefficients) every gy induces an irreducible germ gi[b1 E ... , I

and the germ f[b3 is given by 
’

where Ai = the multiplicity of f at a point of Z(g;) n Sreg .

PROOF. Let V be a neighborhood of b biholomorphic to an open
ball CP(e). Then flVxCk admits a simplification (4.1) with u = 1.
Taking p sufficiently small, it may be assumed that Z(99) = 0 and
each g1 induces an irreducible germ in l’)Y,b[t1, ..., tk]. It follows that

the g1 are irreducible on VXCk, hence ... , Z(gr )~ gives all of
branches of S~: Q.E.D.

THEOREM 4.5. Let Y be a normal, irreducible complex space of
dimension p &#x3E; 0. Assume S is a hupersurface in Y X C such that 
has positive 2p-measure in Y. Let Ft: Y X P - Y be the projection
and 1p = nlS. Let T = Then (1) d(S) and T
.are thin analytic in Y. (2) Assume y has rank Then a) A =
= n (8 ; y) = const. &#x3E; 0 for all y EY - T; b) Yo n T = ly E Yo I
* (I y)  ~~; c) if Yo GY- d(8) m Ysing, there exist a neighborhood V
of y,, and a rational minimal equation g = 0 of Sv on V X C with the
following properties:

(i) For all and y = V (w),

(ii) There is a function qv with Z(rw) = T and set-

ting Y° = V - T.

on VO x C.

PROOF. Assume p &#x3E; 0. Theorem 3.2 implies A(~S) = Yo is open,
dense in Y. Also, ~oo is thin analytic in S, hence codim T &#x3E; 1. As-
,sume Let The 
~1 ( Yo &#x3E;C P) ~ Yo defines an analytic covering with sheet nnmber 1 &#x3E; 0.
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The same holds for the restriction 1p° = YO. Define

By Lemma 3.3, U= the largest open set in Yo such that 8u - U
is a proper map. Hence (3.2) implies T r1 U = 0. Therefore,
Y°= II, so that = Y°- U; from this and (3.3) assertion b)
follows.

If yo E Yreg, let V be a neighborhood of Yo biholomorphic to an open
ball in CP. Then Theorem 4.2 yields a rational minimal equation g = 0
of S, on VxC.

Assume n G Yo. One can choose a neighborhood V C Yo of yo
and an open set Gee S such that

Then the fiber product

is holomorphic on VXC ( [11, 1.2.20] ) . If Yo EYo, the pair ( V, G)
can be chosen so that and Therefore, a holomorphic
function T is well-defined on W by setting = 1jF(J for every
such pair ( Y, G).

With ( V, G ) as in (4.5) and setting the quotient
is defined on VoxC. Moreover,

where a; E (with aA = 1 ) . Riemann’s extension theorem shows
that there exist ( j = 0, 1, ... , A) with q; = a;/ao on yo.
Then the product

extends holomorphically to V X C. Since T n U = 0, it follows
from (3.2) that V n T = Therefore, Z(g) =,gy. By (4.6) and
Theorem 2.3, g = 0 is a minimal equation of S~. Define r¡v = q,,.
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Take zu = (y, With (V, G) selected for y as in (4.5), Lem-
ma 2.2 and (4.6) imply that

Since is holomorphic at w, (4.3) follows.
It remains to prove assertion c)-(ii) for the case yo E Yreg . Define

by

(where §5) is given in Theorem 4.2). Then Z(qv) = T n V. By
(4.3), (4.6) and Theorem 1.3, the quotient glvf c x C). Hence

for some u E 0*(VO). It follows that u = rw on yo, which proves
(4.4). Q.E.D.

REMARK. Assume (64) and 8 satisfies the same conditions as in
Theorem 4.5 (with rank V = p ) . Then Theorem 4.2 gives a rational
minimal equation g = 0 of S on Y X C. If 27 y is defined by (4.7), the
preceding proof shows that YO=Y-Z(?71) and (4.4) holds with V=Y.
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