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Algebraic and Relational Semantics for Tense Logics.

PAOLA UNTERHOLZNER (*)

The close connection between algebraic and relational models for
modal logics is expressed mathematically with a duality between
categories. Here we extend such duality to models for tense logics.
We follow the exposition given in [8], thus reducing proofs only to
these steps, which differ significantly from the modal case. In the

second section, we also extend to tense logics a technique for proving
completeness (the unravelling techniqu.e of [7]), and adapt it to obtain
completeness of the tense logic of provability GL. We use here nota-
tions of [8].

Chapter 1

§ 1. We recall that a tense logic is a logic with two operators 0
and 8, usually known as necessity in the future and in the past,
respectively, so that 0 and j3 both satisfy separately rules and axioms
for the logic K, i.e.:

(*) Indirizzo dell’A.: Seminario Matematico, Università di Padova, Via Bel-
zoni 7, 35100 Padova.
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and the following formulas:

(about tense logic see [12]).
As usual, the algebraic semantics for tense logic is given by tense

algebras, which are triples (A, Ty ~O), with A = A, -~-, ~ , v, 0, 1) a
Boolean algebra, where -[-, ~ , v, 0, 1, are the symbols for join, meet,
complementation, zero, one respectively, and T and e are unary opera-
tions satisfying:

(an operation with conditions (7) and (9) is also called a hemimor-

phism), and also:

Conditions (7)-(12) together are easily seen to be equivalent to the
conditions (7)-(10) and:

Let us observe that two operators 7:, e satisfying (13) were called
conjugate in [4].

The relational semantics is given by triples .~ = r, 13), where
X is a set, r a binary relations, 13 a subalgebra of 2x closed with respect
to r+ and (r-1)+, where :
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We take 13 as a base of clopen (closed and open) subsets for a topology
on X. The valuations on F are restricted to elements of 13, and this
justifies our assumption of closure with respect to r+ a.nd (r-1)+, since
we put as usual:

§ 2. We shall extend to the tense case the following theorem on
duality between algebras and frames, as stated in [8]:

THEOREM. The category of modal algebras and homomorphisms
is dual to the category of descriptive frames and contractions.

Before giving a tense formulation of this theorem, let us observe
that all our assumptions for D, and hence for z, are indipendently
true for 0, and hence for ~.

In fact, axioms and rules for D and 0 are exactly the same.
In the proof of this theorem in the modal case, relations are seen

as morphisms r between frames; more precisely, morphisms from
(.X, ’6) to (Y, with ’6) and (Y, ’LL) frames, are all relations
r k Xx Y, so that:

where

We observe that in the tense case, it is impossible to follow this way.
because we must add to this last condition the following:

with

Obviously, y this would compell r to be a morphism of a frame on
itself. Thus we directly define functors between the categories of

tense algebras with homomorphisms and tense frames with bicon-
tractions ; bicontractions are obtained extending to tense frames the
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concept of contraction (or p-morphism) between frarmes. A precise
definition is:

DEF. 1.1. Let (.X, r, 73), ( Y, s, U) be tense frames; a continuous
function c: X - Y is a bicontraction if:

As we will see, with this definition, the dual c+, defined as 
preserves both and (2.

For any tense algebra (A, try we now put:

( a ) .ae+ = the Stone space of A,

(b) z+ (e+) is the relation: (S(2+T) if and only if Ta c- S

(ga E ~S) - a E T, with S, T E ~+, 7

(c) h+ = h-1, for any homomorphism h of tense algebras.
Then we define (A, r, ~o )+ = ( ~+, T+, (2+) and the first step is to

prove:

LEMMA 1.2. For any tense algebra (A, (A, T, e)+ is a tense
frame.

PROOF. It is enough to show that z+ = O+1, which follows from
the assumptions linking r with p. In fact, by formulas 

it follows:

if and only if (by definition of -r+’), if and only
if Via E A, z~a E I - a e s (by definition of if and only if Va E A,

(in fact but TV(2va E T --~ v(2va mS’),
if and only if, Va E A, oa E T, if and only if So+ T.

On the other side, for any tense frame Y= (X, r, 1)), we put
,~.+_ (1), r+, (r-~)+)? where by 1) we intend the Boolean algebra
(1), u, n, B~ ø, X). I,

For any relation r, r+ is a hemimorphism (see [8]), thus we need
only to prove:
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These facts follow easily from the identities r-1+ C =BrBC and r+ C =

(see [8], Lemma 1).
Let us now call Bimal the category of tense algebras homomor-

phisms, Bifra the category of tense frames and bicontractions, and let
us consider Bifra*, i.e. the subcategory of compact frames, Hausdorff,
with r a strongly continuous relation (see [8]). Then the following
theorem holds:

THEOREM 1.3. Bimal and Bifra* are dual one to each other.

It is obviously impossible to have a duality with Bifra, because
the dual of a tense algebra is always compact.

The proof of this theorem is obtained modifying the proof of

duality in the modal case (see [8]), according to the observation above,
using Lemma 1.2 and the fact that each property true for ~, or r,
or r, is separately true for 8, e, r-1.

§ 3. A relevant semantic consequence of the duality theorem is
the proof of completeness of first order semantics, also in the tense
case. 

_

COROLLARY 1.4. Let Y = b) be a tense frame; th en Y is
equivalent to 5;"+.

PROOF. Let nt be the natural translation from the set of formulas
into the set of terms in our first order language (see [8]). Let us

now suppose that, for any valuation cc, vala P = X ; but vala P = X,
if and only if ap,,,) = 1, where pi , ... , p n are all vari-

ables occurring in P, if and only if P = X.

For any modal algebra ~, we call LA = {P: P holds in ~~ the
logic of A, and similarly, for any ~P : the

logic of Y. Also we say that two models are equivalent if they give
the same logic. A frame 5;- is said to be for the logic L if Z c LF.

COROLLARY 1.5. Let A be a tense algebra; then A is equivalent
to ~+ . 11

PROOF. It is sufhcient to observe that, since A = At, then

LA+ = Z~+ = LA. In fact, ~+ is a frame, and then for ~+ Corol-
lary 1.4 holds.

These corollaries are essential to prove the following:
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THEOREM 1.6. For any normal tense logic L, P if and only
if P, for all first order frames Y for .L.

PROOF. The necessity follows from the definition of a frame for L.
For the converse, let us observe that P if and only if nt P = 1 E
E Id TAL , (where TAL is the class of all L-tense algebras, i.e. the class
of all algebras which satisfy the identities, which are the translation,
by nt, of formulas valid in .L ) .

So, if f L P, then by the completeness of algebraic semantics, there
exists a L-tense algebra A, so that nt P = 10 Id ~, i.e. LA.
But EA+ , therefore P 0 LA+, i.e. P, because A+ is a frame
in which P is false.

Let us observe that this is not completeness with respect to the
frames with the discrete topology. For example, let us consider the
logic with the following axioms:

It is well known that, if Y = (X, r, 13) is a frame with r transi-

tive, (a) is equivalent to the fact that r is upper unbounded, (b) is

equivalent to the well-foundedness of r and implies irriflexivity. Let

us consider a set ~S, with both S and its complement cofinal, S upper
unbounded and let ro E S. Then xo 117L D Q P -~ Q 0 P, and hence
the logic with these axioms has no models with the discrete topology.
It is however consistent, because (N, , ~), where ~z contains all

finite and cofinite subsets of N, is a first order model for that logic.
The results of duality are useful in many applications, for example

in the following semantic lemmas, whose proof is an extension of

the modal case (see [8]).

LEMMA 1.6 (Bicontractions -lemma). Let :F = (.X, r, i3) , l% = ( Y, s, 9.1)
be tense frames. Let c: ,~ -~ ~ be a bicontraction, c onto. Then, for
any set of formulas 1-’ and formula P, T’ ~~’ P -~ T’ I’ P, (where
is the strong consequence relation; see [8]). In particular 

LEMMA 1.7. (X, r, 13), lll = ( Y, s, U) be tense frames.

Let Y be a subframe of 9. Then T p r P, and in par-
ticular .L~.
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Chapter 2

§ 1. Now we extend to the tense case the technique introduced
in [7] and there called « unravelling technique », and we apply it to
the proof of some completeness theorems.

The result of the usual « unravelling» ~&#x3E; is the transformation of

models for logics in equivalent frames, which are generated trees.

In the tense case, we will not obtain trees, but more complex struc-
tures, which we call « generated nets ».

Let now A = (X, r, a) be a model of a tense logic Z, and xo E X.
We define the new structure ~* _ (X*, r*, x*) as follows:

i) X* will consist of sequences where
for and for or Ei==r-l.

&#x3E; if and only if Xm srn and

iii) for atomic formulas Pi, ... En_lXn) Eval:Pi, if and only
if xn E vala Pi .

By induction on the length of formulas, we can show the following:

LEMMA 2.8. P, if and only if xn H- P, for any
formula P.

The result is in conclusion a model equivalent to ~ and based
on a frame generated by and with a net structure. In this way,
we obtain completeness proofs for several tense logics with no dif-

ficulty. In fact, for any modal logic L we define the tense extension
Lp as the minimal tense logic whose axioms on Cl are the same as
in L. More explicitely:

DEF. 2.9. We call tense extension of a modal logic L the logic:
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THEOREM 2.10. If L improved to be complete using the unravel-
ling technique, then Ex is also complete.

PROOF. First, if there exists and I with x, 1174 P;
by Lemma 2.8, there exists a sequence xo~ in the generated net, so
that xo~ 

Conversely, L, is valid in the generated nets, whose generated
subtrees satisfy the same properties of L (with the term subtree, we
call any part of the net, which is isomorphic with a tree). This fact

depends on our definition of LT, in which the only axioms with the
operator B are those valid in every tense logic.

§ 2. Let us now consider the logic K4r, which is the extension, y
in the sense of Def. 2.9, of the modal logic K4.

Rules and axioms of K4r are:

(1) Tautologies,

For .I~4 the following theorem holds:

THEOREM. K4 is complete with respect to the class of transitive
trees (see [7]).

Similarly, we prove that:

THEOREM 2.11. is complete with respect to the class of tran-
sitive nets.

PROOF. By Theorem 2.10 and the fact that X4y is valid in every
transitive net.
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An other case is that of the tense extension of GL, the modal
logic obtained adding (D A - A) - D A (L6b formula) to the mini-
mal normal modal logic .K. It is by now well-known that GL is com-
plete with respect to transitive and terminal frames (a frame is said
to be terminal if it contains no infinite chains or also

with respect to finite irriflexive trees (see [2] or [9]).
We can prove with a modification of the technique above, that

GE, is also complete. Note however that GLT does not have the
finite model property: [~ ( 0 A-~ A) -~ 0 A is false, but only in a
lower unbounded frame.

THEOREM 2.12. GLT is complete with respect to the class of tran-
sitive terminal nets.

PROOF. If (7Zy t- P, then ](0 P (KO = the class of irriflexive,
transitive, terminal, lower unbounded nets), because GE, is valid in
this kind of nets.

For the converse, we suppose that GLr If- P. Let A be a model
for GE,, and xo G fl, Xo !If-P. We generate, by induction, starting
from x,,, a net, which falsifies P, in the following way: let the first
sequence be is a sequence, we consider the set
8 = ~Q : Q is a subformula of P}. If there exists some Q E ~’, with
xn 1If- 0 Q (if this Q does not exist, the sequence is complete), there
exists some x,, with and (by L6b formula).
The new sequence will be the x° Eo ... 

The unravelling technique will be applied, starting from xn, to

falsify subformulas of P with 8, which are not true in xn .
Let us observe that our steps regarding the future are finite; in

fact, the number of subformulas of P is finite, in particular formulas
with 0, and by application of L6b formula, D Q, there
exists a point Xm, with ain’rxm and Xm H- D Q.

We obtain, by this way, an irriflexive net, which we close transi-
tively. Moreover, /If- * P.

By induction on the structure of formulas, we prove in fact that
H-* P if and only if xnl+-P.

The step for atomic formulas is by definition iii).
Inductive steps with -,, A are easy.

If x,, H- 0 Pi then by definition, for any xt, if xnrxt, then

this, by inductive hypothesis, gives that for each a’, ara’

implies a’ 1+* P, whe re a Or’ = 

But then 0’ H-* D P.
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If Xn then there exists a xt, with xn rxt and such that

by inductive hypothesis there exists a sequence a’,
with araa a’W* -n P, where a’= En_1xn’I"xt&#x3E; ; but then D P.

if and only if for each xt, if then xt W Pi if and
only if for each a’, if then ~’ E-f-* P, where a = 

if and only if a H-* 0 P.
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