@article{RSMUP_1982__66__113_0, author = {Dobbs, David E. and Fontana, Marco}, title = {Classes of commutative rings characterized by going-up and going-down behavior}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {113--127}, publisher = {Seminario Matematico of the University of Padua}, volume = {66}, year = {1982}, mrnumber = {664575}, zbl = {0483.13001}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1982__66__113_0/} }
TY - JOUR AU - Dobbs, David E. AU - Fontana, Marco TI - Classes of commutative rings characterized by going-up and going-down behavior JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1982 SP - 113 EP - 127 VL - 66 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1982__66__113_0/ LA - en ID - RSMUP_1982__66__113_0 ER -
%0 Journal Article %A Dobbs, David E. %A Fontana, Marco %T Classes of commutative rings characterized by going-up and going-down behavior %J Rendiconti del Seminario Matematico della Università di Padova %D 1982 %P 113-127 %V 66 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1982__66__113_0/ %G en %F RSMUP_1982__66__113_0
Dobbs, David E.; Fontana, Marco. Classes of commutative rings characterized by going-up and going-down behavior. Rendiconti del Seminario Matematico della Università di Padova, Tome 66 (1982), pp. 113-127. http://archive.numdam.org/item/RSMUP_1982__66__113_0/
[1] On the compactness of minimal spectrum, Rend. Sem. Mat. Univ. Padova, 56 (1977), pp. 79-84. | Numdam | MR | Zbl
- ,[2] Separation axioms between T0 and T1, Indagat. Math., 24 (1962), pp. 26-37. | MR | Zbl
- ,[3] On regular group rings, Proc. Amer. Math. Soc., 8 (1957), pp. 658-664. | MR | Zbl
,[4] Algèbre Commutative, Chs. 1-2, Hermann, Paris, 1961.
,[5] Proprietà di separazione della topologia di Zariski di uno schema, Rend. Ist. Lombardo Sc. A, 106 (1972), pp. 79-111. | MR | Zbl
,[6] MARCO - A. ORSATTI, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc., 30 (1971), pp. 459-466. | MR | Zbl
[7] I. J. PAPICK, Going-down: a survey, Nieuw Arch. Wisk., 26 (1978), pp. 255-291. | MR | Zbl
-[8] Topologically defined classes of commutative rings, Annali Mat. Pura Appl., 123 (1980), pp. 331-355. | MR | Zbl
,[9] Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ. A, 7 (1956), pp. 17-27. | MR | Zbl
,[10] Finitely generated projective ideals in commutative rings, J. Reine Angew. Math., 298 (1978), pp. 98-100. | MR | Zbl
,[11] Commutative Rings, Allyn and Bacon, Boston, 1970. | MR | Zbl
,[12] Minimal prime ideals in commutative semigroups, Proc. London Math. Soc., (3), 13 (1963), pp. 31-50. | MR | Zbl
,[13] The spectrum of a ring as a partially ordered set, J. Algebra, 25 (1973), pp. 419-434. | MR | Zbl
,[14] J. OHM, The ordering of Spec (R), Canad. J. Math., 28 (1976), pp. 820-835. | MR | Zbl
-[15] A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), pp. 257-263. | MR | Zbl
,[16] Finiteness in projective ideals, J. Algebra, 25 (1973), pp. 269-278. | MR | Zbl
,