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Amalgams of Torsion-Free Nilpotent Groups
of Class Three.

BERTHOLD J. MAIER (*)

SUMMARY - If A, B are groups with a common subgroup D then a group C
is called a (strong) amalgam of .A with B over D, if A, B  C and

A group D is called a (strong) amalga-
mation base, if there exists a (strong) amalgam of A with B over D for
all A and B containing D. In this paper we present necessary and suf-
ficient conditions for the existence of (strong) amalgams in the class of
torsion-free nilpotent groups of class three. We also characterize the

(strong) amalgamation bases. Finally we determine those groups in this
class that are algebraically closed in the sense of Abraham Robinson.

1. Introduction.

In the class of all groups the free product with amalgamated sub-
groups (cf. [5]) is a strong amalgam. So, strong amalgams exist in
this class, and every group is a strong amalgamation base. For most
other classes of groups, however, amalgams do not exist in general
(cf. [5] A.8). In these cases we have to establish conditions as to when
they do exist. A famous example of that kind is Higman’s theorem
on amalgamation of finite p-groups [4]. As to nilpotent groups of

fixed class the class two case was dealt with repeatedly (e.g. in [12],
[1], [8], [10]) . The conditions that we found in [8] were rather tech-
nical, although fairly intelligible. They turned out to be quite simple

(*) Indirizzo dell’A.: Mathematisches Institut der Albert-Ludwigs-Univer-
sitat, D-78 Freiburg, West-Germany.
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in the case of torsion-free groups ([8], Satz 1) . The same holds true
in 9~, the class of torsion-free nilpotent groups of class at most three,
which we are going to consider in this paper.

THEOREM 3.1. Let A, and D A, B a common subgroup.
There exists an amalgam of A with B over D in 9~~, if and only if

THEOREM 3.3. There exists a strong amalgam of A with B over D
in lnt if and only if (*) and (An n D) n (Bn n D) = E N.

Here and 1 c Zl(A) c Z2(A) ~ Z3(A) = A de-
note the lower and the upper central series, respectively, y of a group

= Z(A) is the center of A and 
= Z(A /Z(A)) ; further = [A~, A], where [X, Y], the commutator
group of the subgroups X, Y, is the subgroup generated by all com-
mutators [x, y] = x-ly-1 xy, x E X, y E Y. Finally An denotes the set
of all n-th powers of elements of A.

In (*) B2 n D may be viewed as a subgroup of D c A, hence,
[B2 n D, A] makes sense in the group A; then A3, [B2 r1 D, A]) r1 D
is considered as a subgroup of and the first condition 

[B2 r1 D, A]~ r1 D  Z(B) makes sense in B. This condition is obviously
necessary, as the left hand side is contained in C3 of any amalgam C
and so in if Similar considerations can be
made as to the other conditions.

Let us note that (*) is equivalent to the following condition which
reminds of Higman’s condition in [4].

) A and B have central series of length 3 which intersect in the
same subgroups with D.

If (*) holds, then

and
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are two central series of A and B, respectively, such that

Conversely, if (* *) holds and A = G1 ~ G2 ~ G3 ~ 1, B = 
are central series of A and B with G2 r1 D = D, G3 r1 D = H3 n D,
then A2 r1 = H2 r1 and similarly D c Z2(,.A.).
This implies [A.2 r1 D, B] c [.H2 , and hence (B3’ [A2 r1 D,

which is the third part of (*).
The last part is proved analagously.

An easy application of these theorems gives the characterization
of the amalgamation bases in 9~3’.

THEOREM 4.1. A group D is an amalgamation base in 9~, if and
only if I(D2) = Z2(D) and I(D3) = Z(D).

Here I(X) = (r E for some n e 1~~ denotes the isolator
of a subgroup X in D (cf. [3], p. 19).

THEOREM 4.2. A group D is a strong amalgamation base in W.
if and only if D2 = Z2(D), D3 = Z(D), and D is divisible.

Bacsich [2] showed that a structure is a strong amalgamation
base in a first-order axiomatizable class, if and only if it is an amal-
gamation base and algebraically closed in the sense of A. Robinson
(cf. 9 4 for a definition). Note that this definition of algebraically
closed is different from the one that was considered in [7].

As D2 = I(D2) and D3 = I(D3) for a divisible the

following may be suspected.

THEOREM 4.3. A group D is algebraically closed in ?3’ in the sense
of A. Robinson, if and only if D is divisible.

That the condition is necessary follows from two theorems ot
Malcev’s : (1) roots are unique in torsion-free nilpotent groups and
(2) a torsion-free nilpotent group can be embedded into a divisible
one of the same class; moreover the group and the embedding are
unique up to isomorphism. (Cf. [3], Lemma 2.1 and Theorem 2.4.)



234

The plan of the paper is as follows. In § 2 we provide some em-
bedding lemmas that we shall need in the construction of the amalgams.
A finitely generated torsion-free nilpotent group G has a series of sub-
groups l=~i6~2...~==C such that is the split ex-

tension of G. with an infinite cyclic group (cn). This split extension
is uniquely determined by the automorphism that cn induces on Gn
and as well by the commutators of cn with the elements of Gn . Such
extensions of nilpotent groups to yield certain commutator relations
have been dealt with in [6] and we will use them as our main tool.
If we start with A ~ D, then we want to find a series of split extensions
D = A1 C A2 C ... C An = A. This is always possible if .A and D
are divisible, since then D r1 Zi+,(A)ID r1 Zi(A) is divisible and

isomorphic to a direct factor of 0~3, the factors
of the upper central series of A. The only difference is now that our
split extensions are by groups isomorphic to the additive group Q+
of the rationals. Therefore, we will start with Malcev’s theorem and
embed A and B into their divisible hulls and also D. It may happen
that an element in D has an n-th root both in A and in B. Because
of the uniqueness of roots in torsion-free nilpotent groups, these roots
have to be identified in the amalgam and, therefore, we cannot obtain
strong amalgams in all cases where amalgams are possible. The idea
for the construction of the amalgam is then to form inductively
amalgams Bi of Ai with B over D. The induction step can be done
by lifting the split extension Ai  Ai+l to a split extension Bi+, of Bi .
The group Bi+, can be viewed as an amalgam of Ai+l with 
over D = In § 3 we perform the construction of the amalgam
and in § 4 we give the applications as to amalgamation bases and
to algebraically closed groups in the sense of Abraham Robinson.

We close this section with some notation. 91n is the class of all
nilpotent groups of class at most n and 91~ the subclass of torsion-
free groups. C~~ denotes the subgroup generated by a set X and
« c » denotes inclusion of subgroups. Iterated commutators are used

left-normed, e.g. [o7 y, ol = [[r, y], z]. If G is a nilpotent group of
class at most n then G = G1 ~ G2 ~ ... ~ Gn+~ = 1 and G = 

~ ... ~ Zo(G) = 1 denote the lower and upper central series of G, re-
spectively. We also write Zk instead of Zk(G). Recall that 

0 C,u C n for G E 91n. The normal subgroup that is generated
by a subgroup will be denoted by MG. We shall write 
for the centralizer of an element x in the group G. By abuse of no-
tation 1 will denote the natural number one, the identity element and
the trivial subgroup of any group.
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2. Embedding lemmas.

The first lemma states conditions as to which a nilpotent group
G E %n can be embedded in some .H E %n such that a subgroup in the
lower half of the upper central series of G is contained in the cor-

responding term of the lower central series of H.

LEMMA 2.1. Let and ~M&#x3E;(~20131)/2. There exists a

group in ~~ such that if and only if ~~’ is abelian
and 

PROOF. If and then

and

Conversely, if M  G, then there exists a group .H’ ~ G X ~c~, ~c~ infinite
cyclic, with elements hg such that [hg, c, ... , c] = g, where c
is iterated p-times in the commutator ([6], Satz 1). The two conditions
on M guarantee that .H can be chosen in lnn ([6], Satz 3.1). D

We need the following two cases f or n = 3.

COROLLARY 2.2. Let G E lnt.
1) If and llT is abelian, then there exists in

such that n G = Ha n G = Ga[M, G], Z(H) n G = Z(G).

2) If MZ(G) n O2, then there exists H&#x3E;G in ~3 such that
H2 0 G = G2, 7 .g3 n G = Z(H) n G = Z(G).

PROOF. 1) As If is abelian MG = M[M, is abelian,
too, and by 2.1 there exists in 9ts with The other as-
sertions follow by checking the central series given in Hilfssatz 8
of [6]. 2) is proved similarly. L7

Note that the second embedding in 2.2 can also be performed by a
direct product with amalgamated central subgroups. The next two
lemmas are again consequences of Satz 3 in [6]. They have been
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proved in [7] with the minor difference that linearly independent
mod G2 was stated as mod Z2. This, however, was only needed to
assure that the factor G/Z2 is torsion-free, which is true as well for
G/G2, if G is divisible.

LEMMA 2.3. Let G E in~ be divisible; xo, ... , xn linearly independent
mod G2; g1, ... , gk E G2 n z,, ... , Zn E There exists a group
.H ~ G in in; with an element h E such that h is linearly
independent of gl, ... , gk mod Z(.H) and [h, xi] = zi, i = 1, ... , n.

LEMMA 2.4. Let be divisible with G3 = Z(G) ; x,, ... , xn
linearly independent mod G2 , 1 c ~,

let X = + m, 1~ c n~. The following
are equivalent.

1) There exists .H ~ G in 9~ with an element h such that

b) gi and [z~, xk] -~- m, 1 ~ j, induce

a homomorphism of XIX 0 Z onto 1 ~ i c n + m,
k  n).

By Corollary 2.2 we can embed G E 91t into an 91t such that
some elements in Z(G) or Z2(G) are contained in Ha or ,H~2, respectively.
Lemma 2.4 gives us one of the other possibilities : G E 91; can be em-
bedded into an .H E 91; such that some I(G2) is not contained in
~2(~)1 For this we may assume that G is divisible and and
further by 2.2. Choose 9l E G2BZ(G), z, = 1, then we

obtain in 91t and an element 11, E H with [h, x1] = 91; as gi f#
we have that The next lemma will

give the other case: embed G E 91t into an such that some
is not contained in Z(.g) . Recall that I(X) is the isolator of

a subgroup X.
One of our conditions for the amalgam reads In

Lemma 2.4 we shall need that Z(A) _ jig. To provide this situation
without violating the first condition, we shall use an embedding such
that some x E Z(A)"’Aa is no longer in the center. We first state a fact
that is used in the proof.

FACT 2.5. A divisible group G E R+2 of finite rank and commutator
subgroup G2 of rank one is isomorphic to the direct product of m copies
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of Q+ with a direct product with amalgamated centers of n copies
of U(3, Q). and are invariants for these groups. Here

U(3, Q) denotes the group of upper triangular 3 X 3 matrices with coef-
ficients in Q and l’s on the main diagonal.

This follows from the classification of the central extensions of
abelian groups and of the alternating bilinear forms on finite-dimen-
sional vector spaces. (Cf. [111, Theorems 5.4 and 5.7.)

LEMMA 2.6. Let G E ~3 be finitely generated and g 0 1(G3). There
exists in 9~ such that g 0 Z(H), H2 (B G = G2, .g3 n G = G3.

The condition g rt I( G3) is necessary as and is
isolated for any in ~3 (cf. [3] Theorem 0.4).

PROOF. Taking the divisible hull of G we may assume that g 0 G3.
If even g 0 G2 then we can use Lemma 2.4 as mentioned above. Hence,
we may confine to the case g E G2BG3 and G E 9è~ divisible of finite
rank. As G2 is divisible abelian, let N be a complement of the direct
factor g&#x3E;&#x3E; generated by g in G2. Because g E G3, NG and GIN E in;
with commutator subgroup of rank one. Enlarging N we can assume
that the invariant m in 2.5 is zero for G/N. So G/N is isomorphic to
the direct product of n &#x3E; 1 copies of U(3, Q) with centers amalgamated
over Q+. Also G/N is isomorphic to Q2n+l with a multi-
plication

where gN is identified with (o, ..., 0,1). This group Q2*n+l is embedded
into a group on Q3n+2 with multiplication o

The additional components are denoted by ul, ... , un, v. (Q3n+2,0)
is still a group in and gN is identified with (0, ..., 0,1, 0). Now
we define a split extension of such that the element corresponding
to gN is no longer contained in the center. Our procedure parallels
the embedding of each of the U(3, ~) into some U(4, Q) E We
define a bijective map p on Q3n+2 by
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and show that it is a homomorphism:

Let F denote the split extension of (Q3n+2, o) by ~~. Then

[~~]=[(Cy...,C~l,C),~]=(Oy...~0,1)~1. It follows from the
definition that F e ~3 . Now let H = and embed G into .H

(x, xN). Then [(g, gN), q] ~ 1 in H, and because of the em-
bedding of G identically onto the first factor of H it also follows that
H2 r1 G = G2 and j?3 (1 G = G3. 0

For further applications we state the following corollary.

COROLLARY 2.7. Let G E ~3 , and There exists
a group in 9l~ with an element such that [g, h] = gl ,
H2 n G = G2 , and H3 n G = G3 .

PROOF. As 9l~ is first-order axiomatizable, we may assume by the
compactness theorem (cf. [9] Theorem 1.6.2) that G is finitely gen-
erated : the conditions and gl E G3 also hold in all suitably
chosen subgroups of G and H2 (1 G = G2 as well as H3 (1 G = G3 can
be characterized by sets of first-order sentences with constants in G.
We now recheck the proof of 2.6. If then could be
chosen arbitrarily. In the other case we had [(g, gN), q] = (1, f ) with

and (1, f ) E Z(.H)..As and
the subgroup is central in H

with G (1 X = 1. Thus, G is embedded into and [(g, gN), q] =
= (1, f ) = i n HIX E ~t3 . D

Finally we prove the result described above.
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LEMMA 2.8. Let G E 9l; be divisible. There exists a group 
in such that Z(H) = N3? "- G3 , H2 n G "--’ G2 .

PROOF. By the compactness theorem and the method of diagrams
of model theory, it again suffices to prove the theorem for a G of finite
rank. We first construct an :F E ~3 such that Z(1") n G = G3 and
~"2 r1 G = G2 . Like G, the center Z(G) has finite rank. Let Zl, ... , z,
be representatives of the direct factors in a complement of G3 in Z(G).
For each there exists in in; by 2.6 such that 
1~’2 n G = G2 . If we set and embed G diagonally,
then F meets the two conditions above as zl, ... , Zn i Z(F) and 
is isolated. Finally we choose as in 2.2 a group H&#x3E;F in m; such that

This .H satisfies all assertions
in the lemma. C7

3. The amalgamation theorem.

THEOREM 3.1. Let D be a common subgroup of A, B E There

exists an amalgam of A with B over D in in;, if and only if

Let us note that the theorem is false, if the first condition is weakened
to A, n D  Z(B), as can be seen by examples.

PROOF. To show that the conditions are necessary, assume that
C E %’ is an amalgam of A with B over D. Then [B2 n D, A~~ n
n DC3 n DZ(C)nDZ(B) and A2nDC2nDZ2(C)nD
c Z2(B). The other two conditions are shown in the same way.

Now, let us prove that the conditions are sufficient.

STEP 1. It suffices to prove the theorem for finitely generated
groups. As in the proof of the necessity of the conditions we see

that (*) also holds in all subgroups of A and B. The existence of the
amalgam of A with B over D will follow from the existence of the
amalgam of all finitely generated subgroups by the compactness theorem
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of model theory and the method of diagrams. A purely algebraic
proof of this step could run as follows: We proved in [8] Lemma 5
that the restriction to finitely generated subgroups is justified at

least in the case of varieties of groups, e.g. in the class Thus, the
existence of amalgams in 9~ c ins for all finitely generated subgroups
of A and B will yield an amalgam of A with B over D in The factor

group of such an amalgam by its torsion subgroup is an amalgam
in as the torsion subgroup meets A, B, and D trivially.

STEP 2. There exist groups A’ ~ A, B’ ~ B of finite rank in %)
such that

If we denote the condition (*) in the theorem by *(A, B, D), then
it is easy to see that + (A’, B’, D) implies *(A’, B’, D). Actually
the new condition is much stronger, as it says that the common sub-
group D intersects the lower central series of..A. and B in exactly the
same manner. This will allow us to join ABD to B by finitely many
split extensions in the subsequent steps.

We first deal with the case i = 2 of the last two conditions. Note
that and A2 r1 D is abelian, as it is a subgroup of

and [ A2 , A2] ~ A4 = 1. By 2.2 we obtain B*&#x3E;B in %)
such that B* f1 B = B2 ~ .A2 f1 B = B3[A2 rl D, B], 
n B = Z(B). Let us see that *(A, B*, D) holds:

As subgroups of finitely generated nilpotent groups are again finitely
generated, we may assume that B* is finitely generated, since we only
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have to write finitely many elements of A2 n D as commutators.
Thus we arrived at B* ~ B in 91~ with A2 n and *(A, B*, D).
In the same way we now obtain A* ~ A in 91~ with B2 n and

*(.A.*, B*, D), but then A2 n D = B2 n D. Observe that the con-

ditions concerning the centers now read and B3 n
n D  Z(A*), and these two subgroups are both contained in A: and
in B2.

Next we deal with the case i = 3. As A3 n D Z(B*) we obtain
B’ ~ B* in ~3 by 2.2 such that B2 B* = B2 , Bg n B* = n D.

Let us check *(A*, B’, D) :

Again B’ can be assumed to be finitely generated. Finally we obtain
A’ ~ A.* in 9l; with *(A’, B’, D) and A’ n D = B~ n D, i = 2, 3.

STEP 3. If we replace A’ and B’ by their divisible hulls then
*{A.’, B’, D) remains true. Next we also replace D by its divisible hull D’.
This group is uniquely determined by D and thus A’ and B’ contain
the same divisible hull D’ of D. Note that this replacement of D by
its divisible hulls in A’ and B’ respectively is the only point in the
proof where elements of ABD and BBD may be identified so that
the amalgam becomes a non-strong one. Still *(A’, B’, D’) holds as
well as A~ n D’ = B~ n D’, i = 2, 3, as the lower and upper central
series of the divisible hulls are just the isolators of the respective series
in the original groups. A’ and .B‘’ being divisible of finite rank we may
now apply Lemma 2.8 and assume that + ( A’, B’, D’ ) holds. The

algebraist may enjoy that this reference does not rely on the model
theoretic part of the proof of 2.8.

STEP 4. We may now suppose that A, B7 D are divisible of finite
rank such that + (A, B, D) holds. Then A/A2, and A3 are di-
visible torsion-free abelian groups of finite rank and Ai n DlAi+,, r1
n D - (Ai r1 i = 1, 2, 3 are direct factors of these
three groups, being itself divisible. We choose representatives of bases
in the complements of these direct factors. We proceed in the sequence
i = 3, 2, 1 and call the occurring elements in A at,..., an. If we
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let Di be the divisible hull of (D, al, ... , ai~ in A then D° = D, Dn = A
and [Di, i = 0, ..., n -1, by the choice of the sequence
a1, ... , an. We now construct inductively amalgams B a of Die with B
over D in In the induction step we form an amalgam of (Di,

with Bi over Di. The divisible hull of such an amalgam is an
amalgam of with Bi over Di, but it may as well be viewed as an
amalgam of with B ~ Bi over D = Di r’1 B. Observe that the

amalgams constructed in these steps are all strong ones, indeed Bi+l
is a split extension of Bi by some such that the subgroup
(Di, is isomorphic to the split extension of Di by in A. In

fact, we are lifting split extensions here. To perform this inductively,
we shall assume that + (A, Bi, Di) holds for all amalgams Bi. Thus
B° = B and D° = D is the starting point that we have provided above.
Dropping the i’s we start with + (A, B, D) and a E A such that
[2)y~]2) and construct an amalgam C of B with D, a&#x3E; over D,
such that + (A, C, D, a&#x3E;) holds true. According to the sequence as
the a’s occur we distinguish the three cases a E A3, and
a E 

STEP 5. Case a E .Å3. As A3 n D is divisible and a 0 D, it holds
that ~A3 n D, A3 r1 D X ~a~, and ~D, a~ ~ D x ~a~, too. Let us

choose X E with Z(X ) = X3 and some 1 =J= x E ~3. If we set

then and (2~~~2)x(~~2)x~ where the
left hand side is read in C and the right hand side in A. Therefore, we
may identify a and x. Finally we show + (A, C, (D, a~) : Z(A) = A3
by hypothesis. C3 = = Z(B) XZ(X) = Z(C).

STEP 6. Case a E Since A, is abelian and A2 r1 D is divisible,
we have Further, ~D, a~ is a split
extension of D by (a), as [D, and D r’1 = 1. The group D

being divisible of finite rank, we can choose representatives di , ... , dk
in D of a base of DÅ2jÂ2. The operation of ac on D is

determined by its operation on the di , and, as well, by the commu-
tators [a, di], i = 1, ... , k. If we find C &#x3E; B with an element x E 
such that [x, di] = [a, di] E A3 r1 D = B3 r1 D and x linearly inde-

pendent of D n B2 mod Z(C) , then we have D, D, a). Such
a group exists by lemma 2.3 over with infinite cyclic.
Applying lemma 2.8 we may also assume that C3 = Z( C) ; observe
that x remains non-central under this enlargement. If we identify x
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in C with a in A, we can check the remaining conditions of + (A, C,
D, a»):

STEP 7. Case As [D, a]  D and the

group D, a) is again a split extension of D by ~a~ and determined
by commutators [a, [a, dj], i = 1, k, i = 11 ... , k’, where the
di , d~ are representatives of bases of D/A2 n D gz DA2/A2 and A2 n D,
respectively. As A2 r1 D = D the di and d’ are representatives
of bases of DIB, n D gg DB2/B2, and B2 n D, too. The conditions in
Lemma 2.4.2 for the existence of a group C&#x3E;B with an element x
such that [x, di] = [a, dZ] and [x, d3] = [a, d’], i = 1, ... , k, i = 1, ... , k’,
are formulated only in the subgroup D B. They hold again by 2.4
as the element a realizes such an extension in A. Once more we use
2.8 to obtain C3 = Z(C) . Identifying x and a we have (D, x) -
~ D, a) as the two elements induce the same automorphism on D.
Finally also + (A, C, D, a~) holds, as

The reason, why we cannot obtain a strong amalgam, although there
exists an amalgam, is the uniqueness of roots in torsion-free nilpotent
groups. So, if there exist a E ABD and b E BBD such that an =
- ~’~ E D, then and b have to be identified in any amalgam. In our
construction this was done implicitly in step 3, when we took the
divisible hull D’ of D. Elements a and b as above lie in the divisible
hull of D both in A’ and in B’. They are identified as the following
steps performed a strong amalgam of A’ with B’ over D’. Therefore
we have also proved the following.

PROPOSITION 3.2. Let D C A, B E 9~. If there exists an amalgam
of A with B over D in 9~, then there exists such an amalgam with
A n B = (A n D’ ) n (B n D’ ) . Here D’ denotes the divisible hull
of D.

THEOREM 3.3. Let D c A, B There exists a strong amalgam
of ,A with B over D if and only if (*) in 3.1 and (An n D) n (Bn n D) =
== Dni n e N.
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PROOF. As to necessity we have to prove (An n D) n (Bn n D)  Dn,
the converse being trivial. So, let C be a strong amalgam of A with B
over D in mt and an = bn E D for some a E .A., b E B; then a = b by
the uniqueness of roots. Thus in the strong
amalgam C and an E Dn. As to suinciency, the last condition is equi-
valent to (A n D’ ) f1 (B r1 D’ ) = D and the existence of a strong
amalgam follows from 3.1 and 3.2. 0

COROLLARY 3.4. Let and B be an isomorphic copy
of A over D. Then there exists an amalgam of A with B over D in 9~.
This amalgam may be chosen as a strong one, if and only if D is iso-
lated in A.

PROOF. 3.1 and 3.3: (*) holds as i = 2, 3
in this special case. 0

4. Amalgamation bases.

In this section all isolators are taken with respect to the group D.

THEOREM 4.1. A torsion-free group D is an amalgamation base
in mt if and only if I(Di) = Z4_i(D), i = 2, 3, i.e. the isolators of the
lower central series of D coincide with the upper central series.

Note that I (D3) = Z(D) will imply D E 

PROOF. To prove the sufficiency of the conditions, let DA,
B We have to show that (*) in 3.1 holds. D) 

as the second center Z2(A) is isolated. As

I (D2) = Z,(D), by hypothesis, we conclude A2 r’1 n D) _
c I (B2)  Z2(B). Similarly r1 D) = I (D2) and B2 n D c

c Z2(A) . Therefore, [B2 n D, A] c [I (D2), A] c I (A3) and

By hypothesis, I (D3) = Z(D) and so 
c Z(B) . The last condition follows analogously.
We now show that both conditions are necessary. For both cases

we are going to construct groups A, B &#x3E; D such that (*) in 3.1 is violated
and thus no amalgam does exist. First let Z2(D) and let

Now let ~=~7(4,Z) and ·
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Let A be an amalgam of D with X over g~ ~ (x) and B an amalgam
of D with X over ~g~ ~ ~y~. Both amalgams exist by 3.1 as D2 n
n 9’~ = 1, X2 n = 1, and X2 n y~ _ 9~ c Z2(D)~ X. n
n ~y~ = 1. In A holds g == 0153 ft Z2(A), whereas g = y E B2 in B. As
g E D we have B2 n D ~ Z2(A) and (*) does not hold for the groups A,
B&#x3E;D in %). The same procedure, amalgamating an element

with an element in and with an element
in X3, gives rise to groups A, B ~ D violating (*). Thus, both con-
ditions are necessary. 0

THEOREM 4.2 A torsion-free group D is a strong amalgamation
base in if and only if D is divisible and Di = Z4_i(D), i == 2, 3.

PROOF. The conditions are sufficient by 4.1 and 3.2, as a divisible
group is its own divisible hull. Conversely, the divisibility of D is
necessary because of the uniqueness of roots, and the other conditions
by 4.1, since Di = I(Di), i == 2, 3 for a divisible group D in D

Bacsich [2] showed that an amalgamation base in a first-order
definable class is a strong amalgamation base, if and only if it is

algebraically closed in the sense of Abraham Robinson ([9], p. 157).
In this section we will show that the additional condition « divisible »
in 4.2 is equivalent to algebraically closed in 9~. Note, however, that
this notion of algebraically closed is different from the one that was
dealt with in [7]. We give a definition of Robinson’s notion in the
present context: Let G E al, ... , a~ E G and 8(x1, ... , 7 X,+.) an

existential formula with free variables zi, ... , xn+m in the language
~1, ~ , -’} of group theory. 0 is called algebraic over G if there exists a
k ~ 1, such that in every .H ~ G in there exist at most k n-tuples
hl, ... , hn, such that 0 (hl, ... , hn, al, ..., am) holds in .H; the least pos-
sible bound k ~ 1 is called the degree of 0. Then G is algebraically
closed, if every algebraic formula over G has a solution in G.

THEOREM 4.3. A group G is algebraically closed in 9~ in the sense
of Abraham Robinson if and only if G is divisible.

If G is not divisible and g E G has no p-th root for some
prime p, then xp = g is an algebraic formula of degree one, for g has
a p-th root in the divisible hull, and at most one in any extension of G
by the uniqueness of roots. Thus the condition is necessary. Conversely,
assume G E 9~ is divisible and 8(x, ac) is an algebraic formula of degree k
over G that has no solution in G itself. Then there exists H ~ G in In;
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with an n-tuple h such that a) holds in H. G is isolated in .H. If

.Ho~ ~ i = 0 ... 2k - 1, are isomorphic copies of H&#x3E; G then there
exist strong amalgams of HO,2i with .go,2i+1 over GO,2i gz GO,2i+l’
i = 0 ... 2k-1-1. In the same way we may form strong amalgams

of with Ht,2i+l over Gt,2i "-J G1,2i+l and so on. We end up with
an amalgam which may be viewed as a strong amalgam of all

over the Go;. In Hoa the formula O(hi,a) holds
and, as 6 is existential, it also holds in i = 0 ... 2k -1. As
all the ~i are different, this yields a contradiction to the fact that
1 ~ k  2k i the degree of a) over G. Therefore, all solutions to
an algebraic formula have to lie inside the divisible group G. 0

It may be worth noting that analogous results as 4.1-4.3 hold true
in the case of %2+. This follows easily from Satz 1 in [8] which gives
conditions for the existence of amalgams in 9lt that are more simple
than those in 3.1 here. In the class mt of torsion-free abelian groups
the analogous statements are fairly obvious. Let us close with the
remark that the classes of (strong) amalgamation bases are not first-
order axiomatizable, neither in 9è~ nor in This is in contrast to mi,
where they both are axiomatizable.
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