A result on m-flats in A k n
Rendiconti del Seminario Matematico della Università di Padova, Tome 75 (1986), pp. 39-46.
@article{RSMUP_1986__75__39_0,
     author = {Craighero, P. C.},
     title = {A result on $m$-flats in $A_k^n$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {39--46},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {75},
     year = {1986},
     mrnumber = {847656},
     zbl = {0601.14010},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1986__75__39_0/}
}
TY  - JOUR
AU  - Craighero, P. C.
TI  - A result on $m$-flats in $A_k^n$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1986
SP  - 39
EP  - 46
VL  - 75
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1986__75__39_0/
LA  - en
ID  - RSMUP_1986__75__39_0
ER  - 
%0 Journal Article
%A Craighero, P. C.
%T A result on $m$-flats in $A_k^n$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1986
%P 39-46
%V 75
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1986__75__39_0/
%G en
%F RSMUP_1986__75__39_0
Craighero, P. C. A result on $m$-flats in $A_k^n$. Rendiconti del Seminario Matematico della Università di Padova, Tome 75 (1986), pp. 39-46. http://archive.numdam.org/item/RSMUP_1986__75__39_0/

[1] S.S. Abhyankar, On the semigronp of a meromorphic curve (Part 1), Intl. Symp. on Algebraic Geometry (Kyoto, 1977), pp. 249-414. | MR | Zbl

[2] S.S. Abhyankar - T.T. Moh, Embeddings of the line in the plane, Journal fur die reine und angewangte Mathematik, Band 276, pp. 148-166. | EuDML | MR | Zbl

[3] P.C. Craighero, About Abhyankar's conjectures on space lines, Rendiconti del Seminario Matematico di Padova, to appear. | EuDML | Numdam | Zbl

[4] M. Nagata, On antomorphisms of K[X, Y], Lecture in Mathematics (Kinokunija, Tokio, 1972).

[5] I. Shafarevich, Basic Algebraic Geometry (Springer-Verlag, Berlin, 1977). | MR | Zbl