Direct products of linearly compact primary rings
Rendiconti del Seminario Matematico della Università di Padova, Tome 76 (1986), pp. 45-58.
@article{RSMUP_1986__76__45_0,
     author = {Anh, P. N.},
     title = {Direct products of linearly compact primary rings},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {45--58},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {76},
     year = {1986},
     mrnumber = {881559},
     zbl = {0615.16029},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1986__76__45_0/}
}
TY  - JOUR
AU  - Anh, P. N.
TI  - Direct products of linearly compact primary rings
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1986
SP  - 45
EP  - 58
VL  - 76
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1986__76__45_0/
LA  - en
ID  - RSMUP_1986__76__45_0
ER  - 
%0 Journal Article
%A Anh, P. N.
%T Direct products of linearly compact primary rings
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1986
%P 45-58
%V 76
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1986__76__45_0/
%G en
%F RSMUP_1986__76__45_0
Anh, P. N. Direct products of linearly compact primary rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 76 (1986), pp. 45-58. http://archive.numdam.org/item/RSMUP_1986__76__45_0/

[1] N. Bourbaki, Commutative algebra, Addison-Wesley, 1972.

[2] H. Leptin, Linear kompakte Moduln und Ringe, Math. Z., 62 (1955), pp. 241-267. | MR | Zbl

[3] H. Leptin, Linear kompakte Moduln und Ringe, Math. Z., 66 (1957), pp. 289-327. | MR | Zbl

[4] K. Numakura, Theory of compact rings I, Math. J. Okayama Univ., 5 (1955), pp. 79-93. | MR | Zbl

[5] K. Numakura, Theory of compact rings II, Math. J. Okayama Univ., 5 (1956), pp. 103-113. | MR | Zbl

[6] K. Numakura, Theory of compact rings III, Compact dual rings, Duke Math. J., 29 (1962), pp. 107-123. | MR | Zbl