@article{RSMUP_1987__77__177_0, author = {Casolo, Carlo}, title = {Groups with subnormal subgroups of bounded defect}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {177--187}, publisher = {Seminario Matematico of the University of Padua}, volume = {77}, year = {1987}, mrnumber = {904619}, zbl = {0621.20012}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1987__77__177_0/} }
TY - JOUR AU - Casolo, Carlo TI - Groups with subnormal subgroups of bounded defect JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1987 SP - 177 EP - 187 VL - 77 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1987__77__177_0/ LA - en ID - RSMUP_1987__77__177_0 ER -
%0 Journal Article %A Casolo, Carlo %T Groups with subnormal subgroups of bounded defect %J Rendiconti del Seminario Matematico della Università di Padova %D 1987 %P 177-187 %V 77 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1987__77__177_0/ %G en %F RSMUP_1987__77__177_0
Casolo, Carlo. Groups with subnormal subgroups of bounded defect. Rendiconti del Seminario Matematico della Università di Padova, Tome 77 (1987), pp. 177-187. http://archive.numdam.org/item/RSMUP_1987__77__177_0/
[1] Gruppi finiti risolubiti in cui tutti i sottogruppi subnormali hanno difetto al più 2, Rend. Sem. Mat. Univ. Padova, 74 (1984), pp. 257-271. | Numdam | Zbl
,[2] Periodic soluble groups in which every subnormal subgroup has defect at most two, Arch. Math., 46 (1986), pp. 1-7. | MR | Zbl
,[3] Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87-92. | MR | Zbl
:[4] Wreath powers and characteristically simple groups, Proc. Cambridge Phil. Soc., 58 (1962), pp. 170-184. | MR | Zbl
,[5] Groups whose subnormal subgroups have bounded defect, Arch. Math., 43 (1984), pp. 289-294. | MR | Zbl
,[6] Existenziell abgeschlossene Lχ-Gruppen, Dissertation, Albert-Ludwigs Univ., Friburg i.Br., 1984.
,[7] Finite soluble groups whose subnormal subgroups have defect at most two, Arch. Math., 35 (1980), pp. 56-60. | MR | Zbl
- ,[8] The subnormal structure of some classes of soluble groups, J. Austral. Math. Soc., 13 (1972), pp. 365-377. | MR | Zbl
,[9] On groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. | MR | Zbl
,[10] On the theory of subnormal subgroups, Math. Zeit., 89 (1965), pp. 30-51. | MR | Zbl
,[11] Wreath products and indices of subnormality, Proc. London Math. Soc., (3) 17 (1967), pp. 257-270. | MR | Zbl
,[12] Infinite soluble and nilpotent groups, London, Q.M.C. Math. Notes (1968). | MR
,[13] Finiteness conditions and generalised soluble groups, Springer, Berlin -Heidelberg-New York, 1972. | Zbl
,[14] On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. | MR | Zbl
,[15] Groups with the subnormal join property, Can. J. Math., 37 (1985), pp. 1-16. | MR | Zbl
,