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Existence and Attractivity Results for a Class
of Degenerate Functional-Parabolic Problems.

M. BADII - J. I. DIAZ - A. TESEI (*)

1. Introduction.

We want to study existence, uniqueness and asymptotical be-
haviour of the solutions of the following problem:

Here SZ c is an open bounded subset with smooth boundary 8Q,
m &#x3E; 1 and k, b, uc are given nonnegative functions. We shall always
consider nonnegative solutions of (1.1).

In particular, we are interested in attractivity properties of the
stationary solutions of (1.1)-namely, of the solutions of the elliptic

(*) Indirizzo degli AA.: M. BADII: Dipartimento di Matematica « G. Castel-
nuovo », Università di Roma «La Sapienza », 00185 Roma, Italy; J. I. DiAZ :
Facultad de Matematicas, Universidad Complutense, 28040 Madrid, Spain;
A. TESEI: Dipartimento di Matematica, Seconda Università di Roma, 00173
Roma, Italy.
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problem

where := f dsk(s, x) (x E S~). As we shall discuss in the following,
o

the support and attractivity properties of solutions of (1.2) are closely
related to the structure of the set (supposed nonempty)

The integro-partial differential equation in (1.1) generalizes the
classical Volterra’s population equation [24], in that it includes space
dependence and nonlinear diffusion effects. Such effects were advocated
in population dynamics in [11]; their investigation is a rapidly growing
subject. In the case a = k = b = 0, the equation reduces to the well-
known porous medium equation.

The semilinear case (formally, m = 1) was dealt with in [19]:
under suitable hypotheses, a unique nontrivial nonnegative solution
of (1.2) proved to exist, which attracts in the supremum norm any
(nonnegative) solution of (1.1) not identically vanishing in SZ. A major
assumption was that the delay effect be « not too large » in a suitable
sense. This is not needed if we study the asymptotical stability of
stationary solutions (i.e., if we are interested in « local » results) [18].
Related work, concerning the case of Neumann homogeneous boundary
conditions, can be found in [17, 22, 28].

In the present situation, the interplay between nonlinear diffusion
and the source term gives the set of solutions of (1.2) a richer
structure than in the case m = 1 (concerning this point, see [14]).
Since we are interested in « global » attractivity results, we require
the delay term to be suitably small. Then we generalize to the present
case the above referred results for the semilinear case (see Sections 2, 4);
the main tools of the proof are monotonicity results [7].

Existence, uniqueness and nonnegativity of solutions to (1.1) are
proved in the quickest way suitable for our purposes, using the con-
traction principle (Section 3). Other approaches are possible, based
on monotonicity or compactness results; we point out that all of these
methods apply to a wide class of degenerate functional-parabolic
problems. Here we limit ourselves to prove a compactness lemma,
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whence existence results follow via Schauder’s fixed point theorem.
Related work, although rather different in spirit, can be found
in [9, 10, 26, 27].

2. Mathematical framework and results.

The following assumptions will be under throughout:

(1) a, b are Holder continuous in 0;

(2) b is strictly positive in S~;

(3) k satisfies the following requirements:
(a) measurability with respect to (t, x) in (0, oo) X S2;

H61der continuity with respect to x E SZ, uniformly in

(~) the compact subsets of (0, oo);
(y) summability from (0, oo) to 

(3) nonnegativity in ,5~, for almost every t E (o, oo) ;

(4) uc belongs to the Banach space Cb (- oo, 0; of
bounded continuous maps from (- oo, 0] to For

any t E (- oo, 0], uc(t) belongs to the positive cone .L+(S~) : _
:== (u E L’ (S2): ~c ~ 0 a.e. in Ql.

Let QT:= (0, T] x S2, (0, (T &#x3E; 0). By a solution of
problem (1.1) on [o, T] we mean any U E 0([0, T]; L1(S2)) r1 LOO(QT)
such that

for any (1 E C2(Q~), ~ ~ 0, ~ = 0 on Et (t E [0, T]) ; here

A solution of (1.1) on [0, T] for any T &#x3E; 0 is said to be global.
Upper and lower solutions of (1.1) are similarly defined..
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By definition, a solution of (1.2) (i.e., a stationary solution of (1.1))
is any u E such that

for any E o’&#x3E;0y ~ = 0 on 8Q. Due to assumptions (A1), (A3),
for any solution u of (1.2) is a classical solution of the

problem

Set u2] : _ (u e L+(,S~) : U1 c ~ c (here c denotes the order-
ing induced in L’(Q) by L+ (S~) ; An interval [U1, 
c L§§(Q) is said to be Lp-attractive if there exists a subset S C Cb(- oo, 0;
L+(,S2)) such that: (i) [u1, U2] c ~S’; (ii) for any the corresponding
solution u(t, u,) of (1.1) exists in for any t ~ 0 and satisfies

dist (u(t, 2GC), [U1’ 2~2]) -~ 0 in as t - oo (p E [1, oo]) .

The LP-instability of a solution to (1.2) is defined in an obvious way.
Following [14], we say is strongly positive in an

open subset if u&#x3E;v in S~’ for some v continuous, strictly po-
sitive in S~’.

Concerning (nonnegative) solutions of problem (1.1), the following
existence and uniqueness result will be proven.

THEOREM 2.1. Let assumption (A) be satisfied. Then for any
uc e oo, 0 ; L+(,S~)) there exists a unique global nonnegative solu-
tion of problem (1.1).

Now consider the set P defined in (1.3); denote by Pi 
any of its connected components. The following theorem was

proven in [14].

THEOREM 2.2. Let (A) and the assumption

(Hl) the set P is nonempty

be satisfied. Then:

(i) nontrivial nonnegative solutions of (1.2) exist;



113

(ii) any nonnegative solution of (1.2) is either positive or iden-
tically vanishing in ..I’i Moreover, there exist

solutions of (1.2) positive in P.

It is convenient to point out some ideas underlying the proof of
the above theorem, which play an important role in the following.
The proof of claim (i) is as follows: assumption (A2) ensures that
« large » upper solutions of (1.2) exist; by (H1 ), arbitrary small lower
solutions can be constructed in any open subset of P (see Lemma 4.1).
Thus the claim follows by monotonicity methods [7]. The proof of
(ii) is a rather technical consequence of the maximum principle.

As Theorem 2.2 proves, the set P determines to a large extent
the support properties of nontrivial nonnegative solutions of (1.2).
However, different situations are possible if P ~ particular,
if P is disconnected.

If this happens and m &#x3E; 2, solutions of (1.2) having a free boundary
may exist (equivalently, we say that such solutions have a dead

core [8]). Thus we can construct nontrivial nonnegative solutions

of (1.2), which vanish in different connected components Pi, so are
not ordered in L~(S~). It follows that the set of such solutions doesn’t
have a minimal element (although it has a maximal one, due to (A2)),
and its structure can be fairly complicated.

Similar remarks obviously hold for the problem

Let us denote by v its maximal solution, which is positive in the
set P. We shall need a further assumption, namely

(H~2 ) the set P : _ a(x) - &#x3E; ol is nonempty.

Observe that P ç P; moreover, (H2 ) is easily seen to hold whenever

The following result will be proven.

THEOREM 2.3. Let assumptions (A), (H2) be satisfied. Then there
exists an interval [u, v] C L§§(Q) such that :
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(ii) u &#x3E; 0 in P;

(iii) [u, v] contains any nonnegative solution of (1.2), which is
positive in P.

The couple (~c, v) mentioned in Theorem 2.3 solves a system, which
is the limit of a family of «approximating problems» (see (4.1),,
(4.2)p, (4.3)). If the set P is disconnected, to each connected com-
ponent Pi we can associate an interval [ui, such that [ui, v]’2
~ [u, v] see Section 4). However, such an interval may
contain nonnegative solutions of (1.2) vanishing in Pk, for some
k =1= i. Such solutions reveal to be unstable [14, 16]-which is a good
reason for considering solutions «with largest support)). In fact, the
following holds.

THEOREM 2.4. Let assumptions (.A), (H2) be satisfied. Then the

interval [u, v], whose existence was asserted in Theorem 2.3,

(i) is invariant with respect to solutions of (1.1);

(ii) contains any stable nonnegative solution of (1.2);

(iii) is LP-attractive (pE [1, oo)) if n &#x3E; 1, or LOO-attractive if n=1,
with respect to solutions of (1.1), such that uC(0) is strongly
positive in an open subset of Pi for every i E 7 C N.

The above results become sharper if the interval [u, v] reduces to
a unique element; sufficient conditions for this to happen are given
below.

THEOREM 2.5. Let P = S~ and assumptions (A), (H3) be satisfied.
Then the unique solution of (1.2) positive in Q attracts any solution
of (1.1), such that is strongly positive in an open subset of .~.

Theorem 2.5 extends the attractivity results for the semilinear
case mentioned in Section 1 (see [19, Theorem 2]); in the above

statement, attractivity is meant in the sense of Theorem 2.4.
If P c SZ, more complicated situations can arise; in this respect, let

us state the following result.

THEOREM 2.6. Let assumption (A) be satisfied; let u1, U2 be two
nontrivial nonnegative solutions of (1.2) such that Then

ul = u, in any connected component of supp U1 where u2::¡É 0.
The proof is an easy consequence of [14, Theorem 5] and we shall

omit it. If P = S~, Theorems 2.6 and 2.2 (ii) imply that there exists
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a unique nontrivial nonnegative solution of (1.2)-which actually is
positive in ,SZ. However, this need not be true if P c S~ (in particular,
if see [14] for details).

3. Existence, uniqueness and nonnegativity.

Let us first prove Theorem 2.1.

PROOF OF THEOREM 2.1. Define

it is easy to see that u+ is an upper solution, u = 0 a lower solution
of problem (1.1). Set

it is easily checked that {0, u+l is a closed subset in C([0, T]; 
For any z E ~0, u+} consider the problem:

where M is any constant larger than

Since the right-hand side of the differential equation in (3.1) belongs
to there exists a unique solution u E 0([0, T]; of the
same problem. Define



116

Due to the above choice of the constant M, it is easily seen that

for any test function chosen as in Section 2. It follows that u+ is
an upper, y u 1 0 a lower solution of problem (3.1) ; then

by known comparison results [1].
Now observe that, for any E 0([0, T]; L1(SZ)), the following

inequality holds:

It follows easily that N is a contraction in C([0, T]; for any
T &#x3E; 0 sufficiently small. Then there exists a unique local solution of
(1.1) in 10, u+l, which can be prolonged to [0, oo) by standard argu-
ments. This completes the proof.

Similar results holds for the problem

with g defined as in (2.2) (namely, for problem (1.1) with um replaced
by 99(u)), whenever 99 is locally Lipschitz continuous, nondecreasing
and such that g(0) - 0.

As already remarked, the existence of solutions to problem (3.2)
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can be also proven by monotonicity or compactness methods. These

have been used in [3, 13, 23] for the semilinear case; under the above
assumptions on rp, due to the comparison results in [1], the arguments
carry over to the present situation. As for compactness, suffice it to
prove the following Proposition 3.1: then existence follow s easily
by Schauder’s fixed point theorem.

Let us make the following assumption:

As is well-known, the operator A defined as follows:

is m-accretive in since 99 is nondecreasing [6]. Denote by 
the corresponding nonlinear semigroup. The following proposition
generalizes the results of [2] (see also [5, 25]).

PROPOSITION 3.1. Let assumption (g) be satisfied. Then the

map S(t): is compact for any t &#x3E; 0.

PROOF. According to [4], it suffices to prove that

(a) (I + is compact for any a~ &#x3E; 0;

(b) for any bounded subset Z C D(A) and t &#x3E; 0, the map t --~
--~ s(t) u (u E Z) is equicontinuous at t = t.

We shall only discuss the case n &#x3E; 2.

(a) Let us prove that the level sets

are relatively compact in [4]. Since

for any q E [1, n/(n -1 )] [21] and is compactly embedded
in Lk(Q) for any k E [1, nq/(n - q)] if q  n, g(u) belongs to a compact
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subset of Lk(Q) (for any whenever (m &#x3E; 0)).
As assumption (g) holds, (a) easily follows.

(b) Consider the problem whose semigroup solution is 

namely

It can be shown by a standard approximation psocedure that

where

Thus the conclusion follows by assumption (g) as in [2].

4. Support and attractivity properties.

In Section 2 we mentioned that arbitrarily small lower solutions
of (1.2) can be constructed in any open subset of P (supposed non-
empty). We give for convenience of the reader the proof of this
claim [14], which will be used several times in the following.

LEMMA 4.1. Let assumptions (A), be satisfied. Then, for
any x E P and any neighbourhood U C P of x, there exist nontrivial
nonnegative lower solutions u,, of (1.2) (~e(O~); p&#x3E;0), such that

&#x3E; 0, supp U and 0.

PROOF. Fix any open ball j6 c U which contains x; denote by Ao
the first eigenvalue, by ~o the corresponsing eigenfunction of the

Laplacian in B with homogeneous Dirichlet boundary conditions

(namely, ~o ~o = ~ in B, 0 in B, ~ ~o ~ ~ = 1, $o = 0 on aB) .
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Define

For any or E C2(S~), ~ ~ 0 in = 0 on 8Q we have

(where an denotes the outward normal derivative at 88).
Now let a : = min a(x) &#x3E; 0. It is easy to see that j &#x3E; 0 exists,

such that xeii

for any x E Band e E (0, ~). This proves the claim.
Now consider the following families of problems in .Q:

endowed with homogeneous Dirichlet boundary conditions. The fol-

lowing result will be proven.

LEMMA 4.2. Let assumptions (A), (H2) be satisfied. Then for any
integer p &#x3E; 1 there exists a couple (up, vp) such that:

(i) vp E (« E (0, 1)) j
(ii) vp is the maximal solution of (4.1 ) p in the interval [0, 

(iii) Up is minimal among solutions of (4.2)p, which are positive
in the set P;

(iv) Up  Up+1   vp;

(v) for any solution 11 of (1.2) positive in P.
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PROOF. - Observe that (4.1)o coincides with the differential equa-
tion in (2.4); choose Since (H2) holds, it follows by mono-
tonicity arguments that solutions of (4.2)1 positive in P exist (see
Section 2 and Lemma 4.1] ; the existence of U1 &#x3E; 0 in P, minimal
among them, follows by [14, Theorem 4].

Due to the inequality

v1 is an upper solution of (4.2)1; since vl &#x3E; 0 in the asserted

minimality of U1 implies Then the inequality

and (.~I2) entail the existence of solutions of (4.1)1, which are positive
in P; let us denote by v, the maximal one. It follows from the

inequality

that V2 is a lower solution for (4.1)0; since v, is maximal in P, thus
in P, this proves that 

Now the inequality

implies the existence of a minimal solution u2 of (4.2)2, which is

positive in P. Since

u, is an upper solution for (4.2)1; hence as U1 is minimal among
solutions positive in P.

Let u denote any solution of (1.2) positive in P. The inequality

clearly since
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this in turn implies ~c ~ ~1. The inequality follows easily
by similar arguments.

The above procedure can be iterated at any order, thus proving
claims (ii)-(v). Claim (i) is an immediate consequence of the regularity
assumptions in (.~..) (observe that these allow to use strong differential
inequalities, as we did; see Section 2). The proof is complete.

Now we can prove Theorem 2.3.

PROOF OF THEOREM 2.3. Define v : = lim vp; due to

Lemma 4.2, the limits exist pointwise and in for any p ~ 1.
Then the couple (u, v) satisfies (in the weak sense) the problem in ,5~:

with u = v = 0 on 8Q. As pointed out in Section 2, standard regularity
arguments show that (um, vm) is a classical solution of (4.3), which
implies claim (i). Claims (ii) and (iii) are an immediate consequence
consequence of Lemma 4.2. This completes the proof.

Suppose that is disconnected and consider any connected com-
ponent According to the above remarks, there exists a solution u~
of (4.2),, which is minimal among solutions positive in Pi. Follow
the iteration procedure used in the proof of Lemma 4.2, with initial
steps uo - 0 =&#x3E; vl = v ~ ~ci = ... ; take at any step solutions of (4.2)1&#x3E;’
which are minimal among solutions positive in Pi . It should now
be clear, how to get the interval [ui, v] D [u, v] mentioned in Sec-
tion 2 

The proof of Theorem 2.4 is similar to that given for the semi-
linear case in [19], or for a degenerate parabolic system in [15]-thus
we omit it. Let us only mention that the main idea is to compare
solutions of (1.1) with those of the parabolic problems
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Then the conclusion follows by the attractivity results in [7].
Finally, let us prove Theorem 2.5.

PROOF OF THEOREM 2.5. Due to Theorems 2.3 and 2.4, the con-
clusion follows if we prove that u = v in .Q under the present assump-
tions. For this purpose, observe that the functions [20]

satisfy the problem

Observe that now 0  y~ c x by Theorem 2.3. It follows from the
above that

Due to assumption (H3), the conclusion follows by the maximum
principle.
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