Generalized Morita equivalence for linearly topologized rings
Rendiconti del Seminario Matematico della Università di Padova, Tome 79 (1988), pp. 221-246.
@article{RSMUP_1988__79__221_0,
     author = {Gregorio, E.},
     title = {Generalized {Morita} equivalence for linearly topologized rings},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {221--246},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {79},
     year = {1988},
     mrnumber = {964033},
     zbl = {0661.16036},
     language = {en},
     url = {http://archive.numdam.org/item/RSMUP_1988__79__221_0/}
}
TY  - JOUR
AU  - Gregorio, E.
TI  - Generalized Morita equivalence for linearly topologized rings
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1988
SP  - 221
EP  - 246
VL  - 79
PB  - Seminario Matematico of the University of Padua
UR  - http://archive.numdam.org/item/RSMUP_1988__79__221_0/
LA  - en
ID  - RSMUP_1988__79__221_0
ER  - 
%0 Journal Article
%A Gregorio, E.
%T Generalized Morita equivalence for linearly topologized rings
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1988
%P 221-246
%V 79
%I Seminario Matematico of the University of Padua
%U http://archive.numdam.org/item/RSMUP_1988__79__221_0/
%G en
%F RSMUP_1988__79__221_0
Gregorio, E. Generalized Morita equivalence for linearly topologized rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 79 (1988), pp. 221-246. http://archive.numdam.org/item/RSMUP_1988__79__221_0/

[1] F.W. Anderson - K.R. Fuller, Rings and Categories of Modules, Springer, Berlin, Heidelberg, New York, 1974. | MR | Zbl

[2] L. Fuchs, Infinite Abelian Groups, Academic Press, New York, 1970. | MR | Zbl

[3] K.R. Fuller, Density and Equivalence, J. Algebra, 29 (1974), pp. 528-550. | MR | Zbl

[4] H. Leptin, Linear Kompakten Moduln und Ringe, Math. Z., 62 (1955), pp. 241-267. | MR | Zbl

[5] R.N.S. Macdonald, Representable dualities between finitely closed subcategories of modules, Can. J. Math., 31 (1979), pp. 465-475. | MR | Zbl

[6] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, 6 (1958), pp. 85-142. | MR | Zbl