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RexD. BEM. MaT. UN1v. PaDOVA, Vol. 79 (1988)

A Criterion for a Ratiocnal Projectively Normal Variety
to be Almost-Factorial.

REMO GATTAZZO (*)

SuNTO - Si dimostra che una varietd razionale proiettivamente normale
F cP¥ n = dim &, & semifattoriale se e solo se ammette una parame-
trizzazione o,: P» -~ & che gode della seguente proprietd: sono sotto-
insieme intersezione completa di & tutte le componenti di F N 8, dove
8 & una ipersuperficie di P¥ legata alla parametrizzazione o,. Vengono
date applicazioni ed esempi.

0. Introduction.

In the forthcoming paper « Factorial singularities on rational
quartic surfaces of P*», written in collaboration with P. C. Craighero,
the properties of such surfaces in connection with their parametric
representation on a plane P2 have been deeply investigated. In such
a research, the curves on the surfaces coming from particular points
of the plane, that is the exceptional curves, play a leading role. This
fact has suggested the author the investigation between the relation
on almost-factoriality of rational surfaces and one of its parametric
representation.

This paper presents the answer to the matter. It holds that, if F
is a rational projectively normal variety, ¥ is almost-factorial iff are
set-theoretic complete intersection on § only a finite subset of sub-

(*) Indirizzo dell’A.: Istituto di Matematica Applicata, via Belzoni 7,
35100 Padova (Italy).
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varieties of codimension 1 of ¥ which are referred to the parametrization
(see def. 5); however, among these there are also the exceptional sub-
varieties (see Prop. 1). An immediate affine version of this result
is given and some applications to classes of surfaces of A® or of P?
are enunciated.

The result is an extension of the well-known criterion of D. Gal-
larati for the almost-factoriality which holds for monoid hypersurfaces
in P¥. According to it, one can, for example, tackle the question of the
classification of the almost-factorial rational surfaces of degree four
with only double points.

On the other hand, as it is proved in. [1] Prop. 2.11 p. 260, the almost-
factoriality is a non local property which is unaffected by isomorphisms
in the class of the projectively normal varieties. Since P~ is factorial
(so almost-factorial), for every n > 0 one can find very large classes
of almost-factorial varieties by means of isomorphisms: for example

all the m-ple embeddings of P» in P¥, N = (" 4;'/ m) —1,m>1. Ac-

cording to the new result, one can build more models of rational almost-
factorial varieties which are not necessarly isomorphic to some P»
or to some monoid.

At the end of the paper a rational quartic surface with only double
points which results to be 12-almostfactorial is examined as a detailed
example, and some classes of rational almost-factorial surfaces of A3
are pointed out as well.

1. Let k& be an algebraically closed field of any characteristic.
P¥ and A¥ denote respectively the projective and the affine space of
dimension N over k. Variety on P¥ (or on A¥), will mean always an
algebraic irreducible and reduced closed subset on P¥ (or on A¥), N >3.

A prime divisor (or more shortly) a prime on a variety &, non sin-
gular in codimension 1, will be an irreducible and reduced subvariety
on 5 of codimension 1. Curves surfaces, hypersurfaces on P¥ (or
on A¥) will be varieties of dimension 1, 2, N — 1 respectively.

Let & be a variety on P¥: J(§), k[F], k(F) denote respectively the
(prime and homogeneous) ideal of F in k[X,, ..., Xy], (= k[X]), the
quotient ring k[ X]/J(F), the field of rational functions on F, (= field
of quotients of elements in k[F] of same degree).

DErFINITIONS 1. A Variety & c P¥ is called projectively normal if
E[F] is integrally closed.
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2. A prime C on a variety F c PV, is set-theoretic complete inter-
section (S.T.C.1.) on F with multeplicity A, if exists a hypersurface
G c P¥ guch that F-8 = AC, i.e. AC is the complete intersection of
F and SG.

3. A Variety §F projectively normal is almost-factorial if every
prime Cc & is S.T.C.I. on &F. In particular F is p-almostfactorial
if every prime C on & is S.T.C.I. on § with multeplicity 1<p.

Let & be a projective variety of P¥, with » = dim . We recall
some well known facts (see [4], pp. 107-124) about birational cor-
respondences between projective spaces and in particular between
P and &.

DEFINITION 4. A parametrization p on P» of a projective variety F
is a set

H,,...,Hye€k[U,,..., U], (=FkU])
of homogeneous polynomials (forms) of the same degree such that
a) substituting

(1) X;“*H,‘ i:O,...’N,

for every P e J(F) it follows P(H,, ..., Hy) = 0;

b) if g denotes the image of G in the canonical projection
k[ X] — K[F] = k[@,, ..., xy], for every G e k[X], there exists a set

Fy, ..., F, e k[X]
of forms of the same degree such that
(2) MUizfj(Ho,---yHN) j:07 ey My

for a suitable M e k[U], M 5= 0.

We note that in b) the forms F,, ..., F, are chosen in k[X] only
mod J(¥); thus the polynomial M in (2) can change with the set
Fo, ..., F,; however it must be homogeneous from (2) itself. Moreover
(1) and (2) together imply there exists a k-homomorphism between
the fields k(J) and k(U) of rational functions on § and P respectively.
By this, there must exist a suitable (homogeneous) polynomial @ €
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€ k[X], Q ¢ J(F) such that
(3) qw,=H,(fo,..., fn) 7 =07 (XX N

(see also [4] p. 116). We remark also that for every point 4 € P~ —
— {M = 0} is M(4)+#0, if exists j, 0<j< N, for which U, 0 and,
by (2)

05 M(A) Uy (A) = f,(Ho(4), ..., Ha(4)) = H(A) # 0

for at least one ¢, 0 <i<nm. This proves that the parametrization p
rises, by means of (1), to a map

0, Pr—>F (cPP)

which is regular in P*— {M = 0} and ¢, is invertible by (3).

As above one sees that ¢,*: & — P* is surely regular in § — F N
N {@ = 0}, but in general nothing can be said for the points of the set
F N {Q =0}. If we consider another parametrization ¢ on P of &,
being & irreducible, we have that the map o,: P* - F rised by ¢
coincides with ¢, in an open suitable subset of P». By this they give
a birational map ¢:P» — F(c P¥) which may be biregular too. For
example it is what happens in the m-ple embedding P» — F c P¥

with N:(n_;m)—l.

2. In the following we suppose & c P¥ to be a rational variety
(i.e. every variety & for which exists a birational map P» — F, n =
=dim ¥) and let p a parametrization of F on P~

We are precisely concerned with the particular map o,: P* — &
gived by p and the sets P»— {M = 0} and ¥ — F N {@ = 0} which
depend from p according to the previous notations, and the said
situation.

DEFINITIONS 5. Given a parametrization p on P» of a projective
variety &, we call referred to p all the subvarieties of codimension 1
in & which belong to {Q = 0}.

6. Rational variety of A¥ will be a variety of A¥
whose projective closure is a rational variety in P¥.
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The properties of the map o in the present hypothesis are well
known; we recall someone of them in the

PROPOSITION 1.a) To every subvariety U c F not referred to p, it
corresponds a subvariety o, (V) such that dim ¢;(V) = dim U and
o;U(V) ¢ {M = 0} (see[4], Satz VI, p. 120)

b) The restriction of o,* to the set of non singular points of U —
— VN {Q = 0} is bijective, moreover to every mon singular point cor-
responds a non singular point (see [4] Korollar, p. 121).

Let 5’ and & be two varieties of dimension » and = a birational
map 7: F — F. We recall that a prime VUc F is said exceptional
for 7 if dim v(V) < n— 1. The rational variety § can have only
a finite number of exceptional primes for the birational map P — F:
indeed they can belong among the maximal components of 5 N {@ = 0}
for every parametrization p on P» of ¥; they are then referred to every
parametrization p. On the other hand, if the birational map P* — &
is biregular, no prime of § is exceptional for it.

LeEMMA 1. Let § be a rational variety, F c P¥, and p be a parametri-
zation on Pr of 5. For each prime U c F not referred to p, it ewists at
least an irreducible form ¥ € k[U] such that

Y(F,, ..., F,) e J(V).

Proor. Let C,..., C,ek[X] such that J(VU)= (Cy,..., C,) and
let be

D,=0yH,,..,Hy) i=1,..,5.

Let us denote always with ¢,: P» — & the rational mapping rised
by p and @ € [X], M € k[U] the forms in the (3) and (2) respectively.
First we have
o, (V) ={D;=...=D,=0}.

Indeed obviously ¢,%(V)C {D,=... = D, = 0}; on the other hand, by
Prop. 1.a), 0;*(?V) is irreducible and of codimension 1 in P», so it must
be a hypersurface of P». From this ¢;*(V)2{D, = ... =D, = 0}
and J(o;*(V)) will be a principal ideal generated by ¥ = G.C.D. {D,,
..y D,} and ¥ will be irreducible and ¥ does not divide M. Later,



286 Remo Gattazzo

being the ring k[U] U.F.D. and ¥ = G.C.D{D,, ..., D,}, there exist
A, B;ek[U], i =1,..., s, such that

D§=T.A.‘ fOI‘ i=1,ooo’ s; 1:ZA‘B‘

1=g

by Whieh q]= Ti -AiBi= i .D,:Bg — ﬁ C‘(Ho, vesy HN)B;:

1=i 1=¢ 1=

Let us consider now the form Y(F,,..., F,)e k[X] obtained by
substituting F; to place of U,, ¢ =0, ..., n. It results

# P (Foy..., Fa) =

= z 0¢(H0(F07 ceny Fn)y---’ HN(FM sy F,,))B,-(Fo, ceey Fn) .

1=

Now we want to calculate its image ¥Y(f,, ..., f») in k[F]. From (3)
it is

Cs(Ho(fo’ weey fn)y ey Hu(foy oons fn))':Ci(qu’ wey qN)=q**% O (@gy ..., Ty) ,

by this, from (#) one gets

Y (foy ooy fa) = i g2 O %oy ooy By) Bilfoy oy fn)

1=t

which belongs to the image of J(<VU) in k[F], whence
Y(Foy...y Fo) €J(V).

PROPOSITION 2. Let § c P¥ be a rational projectively normal variety
of dim F = n and p a parametrization of F on P». The following are
equivalent:

a) F is almost-factorial;

b) every prime on F referred to p is set-theoretic complete inter-
section on F.

More precisely if Cy,..., C, are the primes on F referred to p and
A;C; is the complete intersection F with a suitable hypersurface S;c P¥,
1 =1, ..., t, then for every prime Cc F it exists a hypersurface Sc P¥
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such that
F:§=AC where A=LCM{4,.., 4},

that is & is A-almostfactorial.

PROOF. a) = b) is obvious. So we have only to prove b) = a)
Let C,, ..., C; be all the primes of § referred to p. By hypothesis b)
there exist hypersurfaces £, = {L, =0}c P¥ and 4,>0, i=1,..,1,
such that

(4) 3'-'5:;:2.,-(‘3,- i—_'—l,...,t.

Let A = L.C.M.{4,, ..., 4} and let m,, ..., n, be positive integers such
that

(5) l=’n,~l,~ 'I:=1, ...,t.

For every prime D c F we denote with C(D) the affine cone of D and
let C(F) be the affine cone of F, both in A¥+1, Obviously C(D) has
codimension 1 in C(F) for every prime Dc F. Moreover the ring
k[F] can be considered as the ring of the regular functions on C(F).
Let K be the quotient field of X[F]. For every prime Cc § not re-
ferred to p it exists, by Lemma 1, an irreducible polynomial ¥ € k[U]
such that

Y(F,, ..., Fa) € J(V).

Let be H = ¥Y(F,, ..., F,) e k[X] and let h be its projection in k[F].
‘We have

(6) (H = 0} F = div (h) = u€ + D, + ... + D, ,
/,t>0, 'V¢>0, 7::1,...,7',

where 4 = 1 by Prop. 1.b) because C is not referred to p, and D, ..., D,
are distinct primes on F, different from C, which are necessarly re-
ferred to p. Indeed, if D; is one of Dy, ..., D,, it is or exceptional for p
(and then referred to p), or, if it would not be referred to p, the ideal
J(0;%(Dy)), by Lemma 1 is a principal ideal which contains ¥ itself.
Since ¥ is irreducible, then J(o;*(D)) = (¥) = J(o;*(C)). On the
other hand {¥ = 0} ¢ {M = 0} and o, is regular in P*— {M = 0} so
we would have D, = C. So D;, 1 =1,...,7, is in any case referred
to p. Of course r<?, being ¢ the number of all primes of F referred
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to p and among them there are Dy, ..., D,. We can suppose that the
primes of F referred to p in (6) to be D, = C,, ..., D, = C,.

Let us consider now the polynomials L}*tek[X], ¢t =1,..,7r
and we denote with p; their images in k[F]. Since is

g="r(p,..p)eK.
it results, by (4), (5) and (6),

(7) div (9) = AC 4 »,C,+
+ oo + A’l’,e,.— [vlllnl el+ oo + vrlr’”’rer] = le-

Note (7) means that for every valuation v, of the field K centered in
the subvariety & of codimension 1 in C(¥) is

v(9)=01if 6§ C(C) and v, (g9)=21if &§= C(C).

By this ¢ is an element which belongs to the integral closure of k[F],
by the structure theorem of noetherian integrally closed domains.
On the other hand, being k[ ¥] normal because F is projectively normal
(see daf. 1), g e k[F]. It exists then at least a homogeneous G € k[X]
such that its projection in k[F] is g. Moreover we get

(8) F-§=1C.

‘We note that the integer A in (8) does not depend on C but only
on all the primes referred to p. So ¥ is A-almostfactorial.

REMARK 1. Prop. 2 is an extension of a well known criterion of
D. Gallarati on the monoid hypersurfaces A c P¥ (see [3], cap. III,
17, p. 38, and also [7], Prop. 1):

Every prime of M is set-theoretic complete intersection of M iff all
the primes of the cone of the straight lines passing through the vertex of
Mo are set-theoretic complete imtersection.

Indeed the projection from the vertex V of AG onto a hyperplane
not passing through V, gives a parametrization of A on that hyper-
plane. The primes of AL referred to this parametrization are just the
primes of the cone of straight lines of A passing through V. They
are all exceptional too.
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REMARK 2. Prop. 2 also shows that the image § of a m-ple em-

bedding of P» in P¥, N — (" : ™) — 1, is m-almostfactorial (fact

well known). Indeed in the usually parametrization p of & on P~
(see [4], pag. 124 for example) is referred to p a prime Cc F which
can be supposed to be the image of a hyperplane of P». It results that
mC is just the complete intersection of & with a suitable hyperplane
in P¥. Since J is projectively normal one gets that F is m-almost-
factorial.

We can formulate an affine version of Prop. 2 in the following

PrOPOSITION 3. Let §c AY be a rational normal variety. The fol-
lowing facts are equivalent:

a) & is almost-factorial;

b) every prime C, on & referred to a parametrization p of the pro-
jective closure § is S.T.C.I. on &.

Proor. Let § = § be the projective closure of § and C,c & be
a prime whose projective closure C = C, is not referred to the param-
etrization of &. To obtain relation (7) we argue as in Prop. 2. (7)
induces on &

(7) div (g,) = 1C,,
where g, now belongs to the quotient field of & Since & is normal,
the ring k[&] coincides with its integral closure. The arguments as at

the end of the proof of Prop. 2 prove that g, € k[6]. So it exists a
suitable polynomial G for which it results

(8") & {G =0} = AC,.

This proves b) = a), while a) = b) is obvious.

3. Applications and examples.

It is well known that a hypersurface § c P¥ is projectively normal
iff is non singular in codimension 1 (see [6] Prop. 1 p. 389 and Prop 2
p. 391) arguing, in the projective case, on the affine cone of F. In
the case of surfaces of P®* we can apply Prop. 2 to state the
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COROLLARY 1. A rational mon singular surface F € P? is almosi-
factorial only if it is a plane. (So it is factorial).

ProOOF. Let d be the degree of ¥. Since F is non singular and
rational, the geometric genus

P(F)=p,(P?) = (d—1)(d— 2)(d— 3)[6 = 0.
So, if & is not a plane, & is a non singular quadric or cubic. But these
surfaces are not almost-factorial (see [3], or [7]).
COROLLARY 2. A rational surface F c P? of degree d > 1 is almost-
factorial if only if it has a positive (finite) number of singular points,

and has a parametrization p on P? such that very curve on F which
18 referred to p is S.T.C.I. of &F.

Proor. It follows from Prop. 2 and from what we have recalled
about the condition for a hypersurface of P¥ to be projectively normal.

EXAMPLE 1. A quartic surface in P® with only two double singular
points. Let us denote with {T, X, ¥, Z} the coordinatesin P3. Let & be:

F={I"X*+ TY*— Z*=0}.
The surface F is singular only in the double points (1,0, 0,0) and

0,1,0,0).
A parametrization p of F is, for example, given by

H,= W3W2— 0?2, H,=VeU, H,=VWW:— U?),
H,=V*W¥W:— U)ek[W, U, V]
because we have, first
H,H}+ HH,— H; =0,

secondly, let us choose ¥, = Z2, F, = TX, F,=YZek[T,X, Y, Z].
‘We can consider then the rational map

o:(W,U,V)>(T=H, X==H, Y=H,, Z=H,)cCFcPs.
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The restriction on &, of the map
w:(1,X,Y,Z)>(W=DF,, U=F,, V=F,)cP*

is just o-1. Indeed for every F e k[T, X, Y, Z] let f be the canonical
projection of F in

k[T, X, Y, Z)|J(F) =kF]= kit, @, y, 21;
one gets the relations

Hy(foy f1y fo) = ... = (8y°2°)¢, Hi(fo, f1s fo) = ... = (ty*2%) @,
Hy(foy fry f2) = . = (ty°2%)y,  Hj(fo, fry fa) = ... = (y2%)2

from which it results Q@ = T'Y®Z¢. Moreover the product-map

@, 9,2) >W=Ffo, U=H, V=F) —
—(t=H,, v =H,,y = H,, 2= H,)
is the identity on F, while the identities

Fo(Hy, ..., Hy) = Hy = [V W (W2 — U*)*] W,
Fl(Hoy eeey Ha) = HoHs = [V6 Wz(Wz___ Uz)z] U y
Fa(Ho, ceey H;) = H,H,= [V° W3 (W2 — U?)?] V:

show that one must assume M = Ve¢W3(W2— U?)? and they prove
that the product-map

(W, U, V)"’(t:Ho,stuyZHzrz=Ha)"*
= (W = fo, szuv':fz)

is the identity on P2. The components of 5 N {@ = 0)} are

R={T=2=0}, C={Z=TX*+Y*=0},
C={Y=TX—2:=0}, C,={Y=TX+2"=0}

and they are the curves on F referred to p.
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Now we have to prove that every such curves is S.T.C.I. of ¥.
Clearly is
F{T =0} =4R, F-{TX*+4 Y*=0}=4C,,
FA{TX — 2= 0} =3C,+ 2R, F-{TX+ Z2*=0}=3C,+2R.

Let us consider on J the divisor defined by the quotient
[(te — 22)2]/t.

It is just the divisor of 2tw? — 2x2? 4 y* because in k[F] equality
2% = t(tx® + 9°®) holds. From this, it follows

F-{2TX?— 2XZ* 4 Y3= 0} = 6C,.
By the same arguments one gets
F-(2TX>+ 2XZ2+ Y3= 0} = 6C,.

Since every curve of & referred to p is S.T.C.I. on § we can apply to F
Prop. 2: & is then almost-factorial; more precisely F is 12-almostfac-
torial.

As example let us consider the rational curve

Cs={t=(1— )%, o =4s41— 2s), y = 4s3(1 — 5), 2 = 28%(1 — s)} .

C; belongs to F. The curve C; belongs even to the surfaces {Z3 -
+ TXZ—TY* =0}, {Y*Z+ TXY +2TXZ— TY*=0} etc., and
even to the quadric @ = {TX + YZ — Z* = 0}. The images on P2,
by means of 6—%, of the intersections with & of such surfaces are curves
of which a common component, not component of {M = 0} =
= {VeW3(W?— U2)2= 0}, is the line {U + V — W = 0}. By this we
can suppose (W, U,V)=U+ V— W, so Y(F,, I, F,) = TX +
+ YZ — 2.
On the other hand it is

FQ=C+C+R.

Now C, and R are 8.T.C.I. on ¥, so it is also C; with multeplicity at
most 12. It is enough to consider on ¥ the divisor defined by the



A criterion for a rational projectively normal variety ete. 293

quotient
[te — 2%+ yz]'2[[(tx — 22)4]t.
Indeed in k[F] the identities
tyP=— (o — 2*)(tw +2%), &*=1t(r*+ y*);

hold, which give, first
[t — 2% 4 ye]®/(tx — 2%) =

= [(tx — 2?)]2 4 3(tw — 22)yz 4 3y222 -+ y*23/(twx — 22) =

= 212 2% — 2tw® + ty® + 3twyz — 3yz® 4 3y? 22— 2y — {022 — ¥ =

=1tL + 2N
where we have assumed, for example,
L = 2x2t — 2x2% 4 y® + 3ayz — 222, N = — y3— 3yz* 4 3y22— a2*.
Secondly, the divisor of the quotient
(tL + 2N )4t

coincides with the divisor of

g =1L+ 41223 N + 6tz L* N2 + 42 LN® + (tw® + y*)N*.

It then exists in k[X] a polynomial G, homogeneous of degree 15,
such that its image on k[F] is g; then we get {G = 0}-F = 12C;.

EXAMPLE 2. Classes of rational surfaces whith an affine part iso-
morphic to a plane. It is easy to determine a class of surfaces F,c A?
of degree n, for every n > 0, which are isomorphic to a plane and having
projective closure non singular in codimension 1 and n-almostfactorial.

P. C. Craighero has pointed this example to me in the case n = 4.

Let a(T), b(T), ¢(T) be arbitrary polynomials of k[T] of degree
r, 8, m respectively for which is

rs+1=m=mn or rs=n=m-+1.
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Let us consider the two isomorphisms of A3

7: (U, ¥, W) > (U'=T +a(W), V'=V, W'=W)
and

2: (U, VW) (U =T, V' =V, W= W+ b(U') + o(V"))
and their product

xon: (U, V, W) —
>(U'=U+aW), V"=V, W =W+ b(U + a(W)) + &(V)) .

The affine surfaces of A3:
Fo={Z + (X + a(Z)) + o(¥Y) = 0}

are isomorphic to a plane (and more precisely to the plane {W” = 0})
by means of yon and are of degree », and, for example, they admit
the parametrization

X=U—a[—bU)—eV)], Y=V, = — b(U)— o(V)

whose inverse is (U = X + a(Z), V = Y), with Z 4 b(X + a(2)) +
+ ¢(Y) = 0. Such surfaces are then rational and factorial. Their
projective closure ¥, is non singular in codimension 1; the section
of such surfaces with the plane at the infinity is a straight line which
is just the complete intersection of such two surfaces. Such a line is
the only curve on the surface ¥, which is referred to the parametrization
of F,: by this ¥, is n-almostfactorial.

If the polynomial b(T) is linear (s = 1) such surfaces are monoids;
then one can apply Gallarati’s criterion to them with the same con-
clusions.

ExAMPLE 3. Classes of trinomial rational surfaces (of the kind
{X° + Y* = Z%). Let m, n be coprime positive integers, with m < n.
Let (7o, 8o) a integer solution of the diophantine equation

() om—yn=1.
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Every other integer solution (r, s) of such equation is
(B) r=ry+tn,
(B.) s=g8,+tm for every teZ.

For every integer r in (f,), we consider the classes of affine surfaces
of As

8m,n,r = {Xm + Yr= Zrm—l} 9 \‘Fm,n,rz {Xm + Yr= Z'-rm} for r>0 ’
Gy ={Xm+ Yr=Z-m) | e, ={Xn+ ¥r=Z+m} forr<o0.

One gets a parametrization of such surfaces assuming

x=2u, Y =20 with 2z = (1 —o")fum  for the &,,.,,
w=2zu, y==2v wWithz=0o"/(1—wm) for the Fn.,,
z=z"u, y==e*v with 2= (1— w")for for the S, .,

r=z"w, y==2*v withz=wum/(1—o") for the X, ,,,
while for the inverse map we have to assume for the §,, ., and & mynr?
u=uxlz", 0=yl

and » = a2’, v = yz* for the G,,. and for the I,,., respectively.
Every surface &, ., and ., is m-almostfactorial, while the surfaces
Fmnyand G, , . are n-almostfactorial, by Prop. 2 and Prop. 3.

There are other classes of affine rational surfaces which are trinomial
and almost-factorial. For example, for every pair of positive integers
(m, n) the affine surfaces in A3:

Byyn={Xm 4 ¥Yr=Zm+1}  and G, ,= {Xm+ Yr=Zm1},

B, admits a parametrization ¢ = 2"u, y = 2mv, 2 = u™ -} v* whose
inverse is 4 = x[z", v = y[2™, C,,, admits a parametrization x = z"u,
y=2"v, 2 =1/(u™ 4 v*) whose inverse is u = ", v = y[em. The
surfaces B, , and C, , are factorial if m, n are coprimes, B, , is (mn +
+ 1)-almostfactorial and C,, is (mn — 1)-almostfactorial otherwise.
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Note the surface C,; which belongs to the family C, .. By inter-
changing — 2 with 2, one gets the well known surface {z* 4 y* + 2*= 0}
which is factorial even if it has a singular point in 0 = (0, 0, 0) (cfr. [5]
Example 5.8 p. 420).
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