RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

REMO GATTAZZO

A criterion for a rational projectively normal variety to be almost-factorial

Rendiconti del Seminario Matematico della Università di Padova, tome 79 (1988), p. 281-296

http://www.numdam.org/item?id=RSMUP 1988 79 281 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Criterion for a Rational Projectively Normal Variety to be Almost-Factorial.

REMO GATTAZZO (*)

Sunto - Si dimostra che una varietà razionale proiettivamente normale $\mathcal{F} \subset \mathbb{P}^N$, $n = \dim \mathcal{F}$, è semifattoriale se e solo se ammette una parametrizzazione $\sigma_p \colon \mathbb{P}^n \to \mathcal{F}$ che gode della seguente proprietà: sono sottoinsieme intersezione completa di \mathcal{F} tutte le componenti di $\mathcal{F} \cap S$, dove S è una ipersuperficie di \mathbb{P}^N legata alla parametrizzazione σ_p . Vengono date applicazioni ed esempi.

0. Introduction.

In the forthcoming paper «Factorial singularities on rational quartic surfaces of \mathbf{P}^3 », written in collaboration with P. C. Craighero, the properties of such surfaces in connection with their parametric representation on a plane \mathbf{P}^2 have been deeply investigated. In such a research, the curves on the surfaces coming from particular points of the plane, that is the exceptional curves, play a leading role. This fact has suggested the author the investigation between the relation on almost-factoriality of rational surfaces and one of its parametric representation.

This paper presents the answer to the matter. It holds that, if \mathcal{F} is a rational projectively normal variety, \mathcal{F} is almost-factorial iff are set-theoretic complete intersection on \mathcal{F} only a finite subset of sub-

^(*) Indirizzo dell'A.: Istituto di Matematica Applicata, via Belzoni 7, 35100 Padova (Italy).

varieties of codimension 1 of \mathcal{F} which are referred to the parametrization (see def. 5); however, among these there are also the exceptional subvarieties (see Prop. 1). An immediate affine version of this result is given and some applications to classes of surfaces of A^3 or of P^3 are enunciated.

The result is an extension of the well-known criterion of D. Gallarati for the almost-factoriality which holds for monoid hypersurfaces in \mathbb{P}^{N} . According to it, one can, for example, tackle the question of the classification of the almost-factorial rational surfaces of degree four with only double points.

On the other hand, as it is proved in [1] Prop. 2.11 p. 260, the almost-factoriality is a non local property which is unaffected by isomorphisms in the class of the projectively normal varieties. Since \mathbb{P}^n is factorial (so almost-factorial), for every n>0 one can find very large classes of almost-factorial varieties by means of isomorphisms: for example all the m-ple embeddings of \mathbb{P}^n in \mathbb{P}^N , $N=\binom{n+m}{n}-1$, m>1. According to the new result, one can build more models of rational almost-factorial varieties which are not necessarly isomorphic to some \mathbb{P}^n or to some monoid.

At the end of the paper a rational quartic surface with only double points which results to be 12-almostfactorial is examined as a detailed example, and some classes of rational almost-factorial surfaces of A³ are pointed out as well.

1. Let k be an algebraically closed field of any characteristic. \mathbb{P}^N and \mathbb{A}^N denote respectively the projective and the affine space of dimension N over k. Variety on \mathbb{P}^N (or on \mathbb{A}^N), will mean always an algebraic irreducible and reduced closed subset on \mathbb{P}^N (or on \mathbb{A}^N), $N \geqslant 3$.

A prime divisor (or more shortly) a *prime* on a variety \mathcal{F} , non singular in codimension 1, will be an irreducible and reduced subvariety on \mathcal{F} of codimension 1. Curves surfaces, hypersurfaces on \mathbb{P}^N (or on \mathbb{A}^N) will be varieties of dimension 1, 2, N-1 respectively.

Let \mathcal{F} be a variety on \mathbb{P}^n : $J(\mathcal{F})$, $k[\mathcal{F}]$, $k(\mathcal{F})$ denote respectively the (prime and homogeneous) ideal of \mathcal{F} in $k[X_0, ..., X_N]$, (= k[X]), the quotient ring $k[X]/J(\mathcal{F})$, the field of rational functions on \mathcal{F} , (= field of quotients of elements in $k[\mathcal{F}]$ of same degree).

DEFINITIONS 1. A Variety $\mathcal{F} \subset \mathbb{P}^N$ is called *projectively normal* if $k[\mathcal{F}]$ is integrally closed.

- 2. A prime C on a variety $\mathcal{F} \subset \mathbf{P}^N$, is set-theoretic complete intersection (S.T.C.I.) on \mathcal{F} with multeplicity λ , if exists a hypersurface $\mathfrak{G} \subset \mathbf{P}^N$ such that $\mathcal{F} \cdot \mathfrak{G} = \lambda \mathbb{C}$, i.e. $\lambda \mathbb{C}$ is the complete intersection of \mathcal{F} and \mathfrak{G} .
- 3. A Variety \mathcal{F} projectively normal is almost-factorial if every prime $C \subset \mathcal{F}$ is S.T.C.I. on \mathcal{F} . In particular \mathcal{F} is ϱ -almostfactorial if every prime C on \mathcal{F} is S.T.C.I. on \mathcal{F} with multeplicity $\lambda \leqslant \varrho$.

Let \mathcal{F} be a projective variety of \mathbb{P}^n , with $n = \dim \mathcal{F}$. We recall some well known facts (see [4], pp. 107-124) about birational correspondences between projective spaces and in particular between \mathbb{P}^n and \mathcal{F} .

DEFINITION 4. A parametrization p on \mathbb{P}^n of a projective variety \mathcal{F} is a set

$$H_0, ..., H_N \in k[U_0, ..., U_n], \quad (= k[U])$$

of homogeneous polynomials (forms) of the same degree such that

a) substituting

$$(1) X_i \to H_i i = 0, ..., N,$$

for every $P \in J(\mathcal{F})$ it follows $P(H_0, ..., H_N) = 0$;

b) if g denotes the image of G in the canonical projection $k[X] \to k[\mathcal{F}] = k[x_0, ..., x_N]$, for every $G \in k[X]$, there exists a set

$$F_0, \ldots, F_n \in k[X]$$

of forms of the same degree such that

(2)
$$MU_j = f_j(H_0, ..., H_N) \quad j = 0, ..., n,$$

for a suitable $M \in k[U]$, $M \neq 0$.

We note that in b) the forms $F_0, ..., F_n$ are chosen in k[X] only mod $J(\mathcal{F})$; thus the polynomial M in (2) can change with the set $F_0, ..., F_n$; however it must be homogeneous from (2) itself. Moreover (1) and (2) together imply there exists a k-homomorphism between the fields $k(\mathcal{F})$ and k(U) of rational functions on \mathcal{F} and \mathbf{P}^n respectively. By this, there must exist a suitable (homogeneous) polynomial $Q \in$

 $\in k[X], Q \notin J(\mathcal{F})$ such that

(3)
$$qx_j = H_j(f_0, ..., f_n) \quad j = 0, ..., N$$

(see also [4] p. 116). We remark also that for every point $A \in \mathbb{P}^n - \{M = 0\}$ is $M(A) \neq 0$, if exists j, $0 \leq j \leq N$, for which $U_j \neq 0$ and, by (2)

$$0 \neq M(A) U_i(A) = f_i(H_0(A), ..., H_n(A)) \Rightarrow H_i(A) \neq 0$$

for at least one i, $0 \le i \le n$. This proves that the parametrization p rises, by means of (1), to a map

$$\sigma_n \colon \mathbb{P}^n \to \mathcal{F} \quad (\subset P^N)$$

which is regular in $P^n - \{M = 0\}$ and σ_p is invertible by (3).

As above one sees that $\sigma_p^{-1}\colon \mathcal{F}\to \mathbb{P}^n$ is surely regular in $\mathcal{F}-\mathcal{F}\cap \{Q=0\}$, but in general nothing can be said for the points of the set $\mathcal{F}\cap \{Q=0\}$. If we consider another parametrization q on \mathbb{P}^n of \mathcal{F} , being \mathcal{F} irreducible, we have that the map $\sigma_q\colon \mathbb{P}^n\to \mathcal{F}$ rised by q coincides with σ_p in an open suitable subset of \mathbb{P}^n . By this they give a birational map $\sigma\colon \mathbb{P}^n\to \mathcal{F}(\subset P^N)$ which may be biregular too. For example it is what happens in the m-ple embedding $\mathbb{P}^n\to \mathcal{F}\subset \mathbb{P}^N$ with $N=\binom{n+m}{n}-1$.

2. In the following we suppose $\mathcal{F} \subset \mathbb{P}^N$ to be a rational variety (i.e. every variety \mathcal{F} for which exists a birational map $\mathbb{P}^n \to \mathcal{F}$, $n = \dim \mathcal{F}$) and let p a parametrization of \mathcal{F} on \mathbb{P}^n .

We are precisely concerned with the particular map $\sigma_p \colon P^n \to \mathcal{F}$ gived by p and the sets $\mathbf{P}^n - \{M = 0\}$ and $\mathcal{F} - \mathcal{F} \cap \{Q = 0\}$ which depend from p according to the previous notations, and the said situation.

DEFINITIONS 5. Given a parametrization p on \mathbb{P}^n of a projective variety \mathcal{F} , we call *referred* to p all the subvarieties of codimension 1 in \mathcal{F} which belong to $\{Q=0\}$.

6. Rational variety of A^N will be a variety of A^N whose projective closure is a rational variety in P^N .

The properties of the map σ in the present hypothesis are well known; we recall someone of them in the

PROPOSITION 1.a) To every subvariety $\mathfrak{V} \subset \mathcal{F}$ not referred to p, it corresponds a subvariety $\sigma_p^{-1}(\mathfrak{V})$ such that $\dim \sigma_p^{-1}(\mathfrak{V}) = \dim \mathfrak{V}$ and $\sigma_p^{-1}(V) \not \in \{M=0\}$ (see [4], Satz VI, p. 120)

b) The restriction of σ_p^{-1} to the set of non singular points of \mathfrak{V} — $\mathfrak{V} \cap \{Q = 0\}$ is bijective, moreover to every non singular point corresponds a non singular point (see [4] Korollar, p. 121).

Let \mathcal{F}' and \mathcal{F} be two varieties of dimension n and τ a birational map $\tau \colon \mathcal{F}' \to \mathcal{F}$. We recall that a prime $\mathfrak{V} \subset \mathcal{F}$ is said exceptional for τ if dim $\tau^{-1}(\mathfrak{V}) < n-1$. The rational variety \mathcal{F} can have only a finite number of exceptional primes for the birational map $\mathbb{P}^n \to \mathcal{F}$: indeed they can belong among the maximal components of $\mathcal{F} \cap \{Q = 0\}$ for every parametrization p on \mathbb{P}^n of \mathcal{F} ; they are then referred to every parametrization p. On the other hand, if the birational map $\mathbb{P}^n \to \mathcal{F}$ is biregular, no prime of \mathcal{F} is exceptional for it.

LEMMA 1. Let \mathcal{F} be a rational variety, $\mathcal{F} \subset \mathbf{P}^{\mathbb{N}}$, and p be a parametrization on $\mathbf{P}^{\mathbb{n}}$ of \mathcal{F} . For each prime $\mathfrak{V} \subset \mathcal{F}$ not referred to p, it exists at least an irreducible form $\Psi \in k[U]$ such that

$$\Psi(F_0, ..., F_n) \in J(\mathfrak{V})$$
.

PROOF. Let $C_1,\,...,\,C_s\!\in\!k[X]$ such that $J(\mathfrak{V})=(C_1,\,...,\,C_s)$ and let be

$$D_i = C_i(H_0, ..., H_N) \quad i = 1, ..., s.$$

Let us denote always with $\sigma_p \colon \mathbb{P}^n \to \mathcal{F}$ the rational mapping rised by p and $Q \in [X]$, $M \in k[U]$ the forms in the (3) and (2) respectively. First we have

$$\sigma_{_{\! p}}^{\!-1}(\mathfrak{V}) = \{D_1 \!= ... = D_s \!= 0\}$$
 .

Indeed obviously $\sigma_p^{-1}(\mathfrak{V}) \subseteq \{D_1 = ... = D_s = 0\}$; on the other hand, by Prop. 1.a), $\sigma_p^{-1}(\mathfrak{V})$ is irreducible and of codimension 1 in \mathbb{P}^n , so it must be a hypersurface of \mathbb{P}^n . From this $\sigma_p^{-1}(\mathfrak{V}) \supseteq \{D_1 = ... = D_s = 0\}$ and $J(\sigma_p^{-1}(\mathfrak{V}))$ will be a principal ideal generated by $\Psi = \text{G.C.D.}\{D_1, ..., D_s\}$ and Ψ will be irreducible and Ψ does not divide M. Later,

being the ring k[U] U.F.D. and $\Psi = G.C.D\{D_1, ..., D_s\}$, there exist A_i , $B_i \in k[U]$, i = 1, ..., s, such that

$$D_i = \Psi A_i$$
 for $i = 1, ..., s$; $1 = \sum_{i=1}^s A_i B_i$

by which $\Psi = \Psi \sum_{i=i}^{s} A_i B_i = \sum_{i=i}^{s} D_i B_i = \sum_{i=i}^{s} C_i (H_0, ..., H_N) B_i$:

Let us consider now the form $\Psi(F_0, ..., F_n) \in k[X]$ obtained by substituting F_i to place of U_i , i = 0, ..., n. It results

Now we want to calculate its image $\Psi(f_0, ..., f_n)$ in $k[\mathcal{F}]$. From (3) it is

$$C_i(H_0(f_0, ..., f_n), ..., H_N(f_0, ..., f_n)) = C_i(qx_0, ..., qx_N) = q^{\deg C_i} C_i(x_0, ..., x_N),$$

by this, from (#) one gets

$$\Psi(f_0, ..., f_n) = \sum_{1=i}^{s} q^{\deg C_i} C_i(x_0, ..., x_N) B_i(f_0, ..., f_n)$$

which belongs to the image of $J(\mathfrak{V})$ in $k[\mathcal{F}]$, whence

$$\Psi(F_0, \ldots, F_n) \in J(\mathfrak{V})$$
.

PROPOSITION 2. Let $\mathcal{F} \subset \mathbf{P}^n$ be a rational projectively normal variety of dim $\mathcal{F} = n$ and p a parametrization of \mathcal{F} on \mathbf{P}^n . The following are equivalent:

- a) F is almost-factorial;
- b) every prime on \mathcal{F} referred to p is set-theoretic complete intersection on \mathcal{F} .

More precisely if $C_1, ..., C_t$ are the primes on \mathcal{F} referred to p and $\lambda_i C_i$ is the complete intersection \mathcal{F} with a suitable hypersurface $\mathfrak{G}_i \subset \mathbf{P}^N$, i=1,...,t, then for every prime $C \subset \mathcal{F}$ it exists a hypersurface $\mathfrak{G} \subset \mathbf{P}^N$

such that

$$\mathcal{F} \cdot \mathcal{G} = \lambda \mathcal{C}$$
 where $\lambda = \text{L.C.M.}\{\lambda_1, ..., \lambda_t\}$,

that is \mathcal{F} is λ -almost factorial.

PROOF. $a) \Rightarrow b$) is obvious. So we have only to prove $b) \Rightarrow a$) Let $C_1, ..., C_i$ be all the primes of \mathcal{F} referred to p. By hypothesis b) there exist hypersurfaces $\mathcal{L}_i = \{L_i = 0\} \subset P^N \text{ and } \lambda_i > 0, \ i = 1, ..., t,$ such that

(4)
$$\mathcal{F} \cdot \mathcal{L}_i = \lambda_i \mathcal{C}_i \quad i = 1, ..., t.$$

Let $\lambda = \text{L.C.M.}\{\lambda_1, ..., \lambda_t\}$ and let $n_1, ..., n_t$ be positive integers such that

$$\lambda = n_i \lambda_i \quad i = 1, ..., t.$$

For every prime $\mathfrak{D} \subset \mathcal{F}$ we denote with $C(\mathfrak{D})$ the affine cone of \mathfrak{D} and let $C(\mathcal{F})$ be the affine cone of \mathcal{F} , both in A^{N+1} . Obviously $C(\mathfrak{D})$ has codimension 1 in $C(\mathcal{F})$ for every prime $\mathfrak{D} \subset \mathcal{F}$. Moreover the ring $k[\mathcal{F}]$ can be considered as the ring of the regular functions on $C(\mathcal{F})$. Let K be the quotient field of $k[\mathcal{F}]$. For every prime $C \subset \mathcal{F}$ not referred to p it exists, by Lemma 1, an irreducible polynomial $\mathcal{Y} \in k[U]$ such that

$$\Psi(F_0,\ldots,F_n)\in J(\mathfrak{V})$$
.

Let be $H = \Psi(F_0, ..., F_n) \in k[X]$ and let h be its projection in $k[\mathcal{F}]$. We have

(6)
$$\{H=0\} \cdot \mathcal{F} = \text{div } (h) = \mu \mathbb{C} + \nu_1 \mathfrak{D}_1 + ... + \nu_r \mathfrak{D}_r,$$

$$\mu > 0, \ \nu_i > 0, \ i = 1, ..., r,$$

where $\mu=1$ by Prop. 1.b) because C is not referred to p, and $\mathfrak{D}_1,\ldots,\mathfrak{D}_r$ are distinct primes on \mathcal{F} , different from C, which are necessarly referred to p. Indeed, if \mathfrak{D}_i is one of $\mathfrak{D}_1,\ldots,\mathfrak{D}_r$, it is or exceptional for p (and then referred to p), or, if it would not be referred to p, the ideal $J(\sigma_p^{-1}(\mathfrak{D}_i))$, by Lemma 1 is a principal ideal which contains Ψ itself. Since Ψ is irreducible, then $J(\sigma_p^{-1}(\mathfrak{D}_i)) = (\Psi) = J(\sigma_p^{-1}(C))$. On the other hand $\{\Psi=0\} \nsubseteq \{M=0\}$ and σ_p is regular in $\mathbb{P}^n - \{M=0\}$ so we would have $\mathfrak{D}_i = \mathbb{C}$. So \mathfrak{D}_i , $i=1,\ldots,r$, is in any case referred to p. Of course $r \leqslant t$, being t the number of all primes of \mathcal{F} referred

to p and among them there are $\mathfrak{D}_1, ..., \mathfrak{D}_r$. We can suppose that the primes of \mathcal{F} referred to p in (6) to be $\mathfrak{D}_1 = \mathfrak{C}_1, ..., \mathfrak{D}_r = \mathfrak{C}_r$.

Let us consider now the polynomials $L_i^{n_i v_i} \in k[X]$, i = 1, ..., r and we denote with p_i their images in $k[\mathcal{F}]$. Since is

$$g=h^{\lambda}/(p_1\ldots p_r)\in K$$
.

it results, by (4), (5) and (6),

(7)
$$\operatorname{div}(g) = \lambda C + \lambda \nu_1 C_1 + \dots + \lambda \nu_r C_r - [\nu_1 \lambda_1 n_1 C_1 + \dots + \nu_r \lambda_r n_r C_r] = \lambda C.$$

Note (7) means that for every valuation v_{ε} of the field K centered in the subvariety \mathcal{E} of codimension 1 in $C(\mathcal{F})$ is

$$v_{\epsilon}(g) = 0 \text{ if } \delta \neq C(C) \quad \text{ and } \quad v_{\epsilon}(g) = \lambda \text{ if } \delta = C(C).$$

By this g is an element which belongs to the integral closure of $k[\mathcal{F}]$, by the structure theorem of noetherian integrally closed domains. On the other hand, being $k[\mathcal{F}]$ normal because \mathcal{F} is projectively normal (see domains. 1), $g \in k[\mathcal{F}]$. It exists then at least a homogeneous $G \in k[X]$ such that its projection in $k[\mathcal{F}]$ is g. Moreover we get

(8)
$$\mathcal{F} \cdot \mathbf{G} = \lambda \mathbf{C}.$$

We note that the integer λ in (8) does not depend on C but only on all the primes referred to p. So \mathcal{F} is λ -almostfactorial.

REMARK 1. Prop. 2 is an extension of a well known criterion of D. Gallarati on the monoid hypersurfaces $\mathcal{M} \subset \mathbb{P}^N$ (see [3], cap. III, 17, p. 38, and also [7], Prop. 1):

Every prime of \mathcal{M} is set-theoretic complete intersection of \mathcal{M} iff all the primes of the cone of the straight lines passing through the vertex of \mathcal{M} are set-theoretic complete intersection.

Indeed the projection from the vertex V of \mathcal{M} onto a hyperplane not passing through V, gives a parametrization of \mathcal{M} on that hyperplane. The primes of \mathcal{M} referred to this parametrization are just the primes of the cone of straight lines of \mathcal{M} passing through V. They are all exceptional too.

REMARK 2. Prop. 2 also shows that the image \mathcal{F} of a m-ple embedding of \mathbb{P}^n in \mathbb{P}^N , $N = \binom{n+m}{n} - 1$, is m-almostfactorial (fact well known). Indeed in the usually parametrization p of \mathcal{F} on \mathbb{P}^n (see [4], pag. 124 for example) is referred to p a prime $\mathbb{C} \subset \mathcal{F}$ which can be supposed to be the image of a hyperplane of \mathbb{P}^n . It results that $m\mathbb{C}$ is just the complete intersection of \mathcal{F} with a suitable hyperplane in \mathbb{P}^N . Since \mathcal{F} is projectively normal one gets that \mathcal{F} is m-almostfactorial.

We can formulate an affine version of Prop. 2 in the following

Proposition 3. Let $\mathcal{E} \subset \mathbb{A}^N$ be a rational normal variety. The following facts are equivalent:

- a) & is almost-factorial;
- b) every prime C_a on E referred to a parametrization p of the projective closure \overline{E} is S.T.C.I. on E.

PROOF. Let $\mathcal{F}=\overline{\xi}$ be the projective closure of ξ and $C_a \subset \xi$ be a prime whose projective closure $C=\overline{C}_a$ is not referred to the parametrization of \mathcal{F} . To obtain relation (7) we argue as in Prop. 2. (7) induces on ξ

(7')
$$\operatorname{div}(g_a) = \lambda \mathcal{C}_a,$$

where g_a now belongs to the quotient field of \mathcal{E} . Since \mathcal{E} is normal, the ring $k[\mathcal{E}]$ coincides with its integral closure. The arguments as at the end of the proof of Prop. 2 prove that $g_a \in k[\mathcal{E}]$. So it exists a suitable polynomial G for which it results

(8')
$$\xi \cdot \{G = 0\} = \lambda C_a .$$

This proves $b \Rightarrow a$, while $a \Rightarrow b$ is obvious.

3. Applications and examples.

It is well known that a hypersurface $\mathcal{F} \subset \mathbb{P}^N$ is projectively normal iff is non singular in codimension 1 (see [6] Prop. 1 p. 389 and Prop 2 p. 391) arguing, in the projective case, on the affine cone of \mathcal{F} . In the case of surfaces of \mathbb{P}^3 we can apply Prop. 2 to state the

COROLLARY 1. A rational non singular surface $\mathcal{F} \in \mathbb{P}^3$ is almost-factorial only if it is a plane. (So it is factorial).

PROOF. Let d be the degree of \mathcal{F} . Since \mathcal{F} is non singular and rational, the geometric genus

$$p_a(\mathcal{F}) = p_a(\mathbf{P}^2) = (d-1)(d-2)(d-3)/6 = 0$$
.

So, if \mathcal{F} is not a plane, \mathcal{F} is a non singular quadric or cubic. But these surfaces are not almost-factorial (see [3], or [7]).

COROLLARY 2. A rational surface $\mathcal{F} \subset \mathbf{P}^3$ of degree d > 1 is almost-factorial if only if it has a positive (finite) number of singular points, and has a parametrization p on \mathbf{P}^2 such that very curve on \mathcal{F} which is referred to p is S.T.C.I. of \mathcal{F} .

PROOF. It follows from Prop. 2 and from what we have recalled about the condition for a hypersurface of P^N to be projectively normal.

EXAMPLE 1. A quartic surface in P^3 with only two double singular points. Let us denote with $\{T, X, Y, Z\}$ the coordinates in P^3 . Let \mathcal{F} be:

$$\mathcal{F} = \{T^2X^2 + TY^3 - Z^4 = 0\}$$
.

The surface \mathcal{F} is singular only in the double points (1, 0, 0, 0) and (0, 1, 0, 0).

A parametrization p of \mathcal{F} is, for example, given by

$$egin{aligned} H_0 &= W^3 (W^2 - \ U^2)^2 \,, \quad H_1 &= V^6 \ U \,, \quad H_2 &= V^4 W (W^2 - \ U^2) \,, \ \\ H_3 &= V^3 \, W^2 (W^2 - \ U^2) \in k[W, \ U, \ V] \end{aligned}$$

because we have, first

$$H_0^2 H_1^2 + H_0 H_2^3 - H_3^4 = 0$$
,

secondly, let us choose $F_0 = Z^2$, $F_1 = TX$, $F_2 = YZ \in k[T, X, Y, Z]$. We can consider then the rational map

$$\sigma\colon (W,\ U,\ V)\to (T=H_0,\ X=H_1,\ Y=H_2,\ Z=H_3)\subseteq \mathcal{F}\subset \mathbb{P}^3\,.$$

The restriction on \mathcal{F} , of the map

$$\pi: (T, X, Y, Z) \to (W = F_0, U = F_1, V = F_2) \subset \mathbf{P}^2$$

is just σ^{-1} . Indeed for every $F \in k[T, X, Y, Z]$ let f be the canonical projection of F in

$$k[T, X, Y, Z]/J(\mathcal{F}) = k[\mathcal{F}] = k[t, x, y, z];$$

one gets the relations

$$egin{aligned} H_0(f_0\,,\,f_1\,,\,f_2) &= ... &= (ty^6\,z^6)\,t\,\,, & H_1(f_0\,,\,f_1\,,\,f_2) &= ... &= (ty^6\,z^6)\,x\,\,, \\ H_2(f_0\,,\,f_1\,,\,f_2) &= ... &= (ty^6\,z^6)\,y\,\,, & H_3(f_0\,,\,f_1\,,\,f_2) &= ... &= (ty^6\,z^6)\,z \end{aligned}$$

from which it results $Q = TY^6Z^6$. Moreover the product-map

$$(t, x, y, z) \rightarrow (W = f_0, U = f_1, V = f_2) \rightarrow (t = H_0, x = H_1, y = H_2, z = H_3)$$

is the identity on F, while the identities

$$\begin{split} F_0(H_0,\ldots,\,H_3) &= H_3^2 = [\,V^6\,W^3(W^2-\,U^2)^2]\,W\,, \\ F_1(H_0,\ldots,\,H_3) &= H_0\,H_3 = [\,V^6\,W^3(W^2-\,U^2)^2]\,U\,, \\ F_2(H_0,\ldots,\,H_3) &= H_1H_2 = [\,V^6\,W^3(W^2-\,U^2)^2]\,V\,, \end{split}$$

show that one must assume $M=V^6W^3(W^2-U^2)^2$ and they prove that the product-map

$$(W, U, V) \rightarrow (t = H_0, x = H_1, y = H_2, z = H_3) \rightarrow (W = f_0, U = f_1, V = f_2)$$

is the identity on \mathbf{P}^2 . The components of $\mathcal{F} \cap \{Q=0\}$ are

$$\Re = \{T = Z = 0\}\,, \quad \operatorname{C}_3 = \{Z = TX^2 + Y^3 = 0\}\,,$$
 $\operatorname{C}_2 = \{Y = TX - Z^2 = 0\}\,, \quad \operatorname{C}_2' = \{Y = TX + Z^2 = 0\}\,$

and they are the curves on \mathcal{F} referred to p.

Now we have to prove that every such curves is S.T.C.I. of \mathcal{F} . Clearly is

$$\mathcal{F} \cdot \{T=0\} = 4\mathfrak{R} \,, \quad \mathcal{F} \cdot \{TX^2 + Y^3 = 0\} = 4\mathbb{C}_3 \,,$$
 $\mathcal{F} \cdot \{TX - Z^2 = 0\} = 3\mathbb{C}_2 + 2\mathfrak{R} \,, \quad \mathcal{F} \cdot \{TX + Z^2 = 0\} = 3\mathbb{C}_2' + 2\mathfrak{R} \,.$

Let us consider on \mathcal{F} the divisor defined by the quotient

$$\lceil (tx-z^2)^2 \rceil / t.$$

It is just the divisor of $2tx^2 - 2xz^2 + y^3$ because in $k[\mathcal{F}]$ equality $z^4 = t(tx^2 + y^3)$ holds. From this, it follows

$$\mathcal{F} \cdot \{2TX^2 - 2XZ^2 + Y^3 = 0\} = 6C_2$$
.

By the same arguments one gets

$$\mathcal{F} \cdot (2TX^2 + 2XZ^2 + Y^3 = 0) = 6C_2'$$

Since every curve of \mathcal{F} referred to p is S.T.C.I. on \mathcal{F} we can apply to \mathcal{F} Prop. 2: \mathcal{F} is then almost-factorial; more precisely \mathcal{F} is 12-almost factorial.

As example let us consider the rational curve

$$C_5 = \{t = (1-s)^2, x = 4s^4(1-2s), y = 4s^3(1-s), z = 2s^2(1-s)\}.$$

C₅ belongs to \mathcal{F} . The curve C₅ belongs even to the surfaces $\{Z^3+TXZ-TY^2=0\}$, $\{Y^2Z+TXY+2TXZ-TY^2=0\}$ etc., and even to the quadric $Q=\{TX+YZ-Z^2=0\}$. The images on \mathbb{P}^2 , by means of σ^{-1} , of the intersections with \mathcal{F} of such surfaces are curves of which a common component, not component of $\{M=0\}=\{V^6W^3(W^2-U^2)^2=0\}$, is the line $\{U+V-W=0\}$. By this we can suppose $\mathcal{Y}(W,U,V)=U+V-W$, so $\mathcal{Y}(F_0,F_1,F_2)=TX+YZ-Z^2$.

On the other hand it is

$$\mathcal{F} \cdot Q = \mathcal{C}_5 + \mathcal{C}_2 + \mathcal{R}$$
.

Now C_2 and \mathcal{R} are S.T.C.I. on \mathcal{F} , so it is also C_5 with multeplicity at most 12. It is enough to consider on \mathcal{F} the divisor defined by the

quotient

$$[tx-z^2+yz]^{12}/[(tx-z^2)^4]t$$
.

Indeed in $k[\mathcal{F}]$ the identities

$$ty^3 = -(tx-z^2)(tx+z^2), \quad z^4 = t(tx^2+y^3);$$

hold, which give, first

$$egin{align*} &[tx-z^2+yz]^3/(tx-z^2) = \ &= [(tx-z^2)]^2 + 3(tx-z^2)\,yz + 3y^2\,z^2 + y^3\,z^3/(tx-z^2) = \ &= 2t^2\,x^2 - 2txz^2 + ty^3 + 3txyz - 3yz^3 + 3y^2\,z^2 - zy^3 - tx^2\,z - xz^3 = \ &= tL + zN \end{split}$$

where we have assumed, for example,

$$L = 2x^2t - 2xz^2 + y^3 + 3xyz - x^2z$$
, $N = -y^3 - 3yz^2 + 3y^2z - xz^2$.

Secondly, the divisor of the quotient

$$(tL+zN)^4/t$$

coincides with the divisor of

$$g = t^3L^4 + 4t^2zL^3N + 6tz^2L^2N^2 + 4z^3LN^3 + (tx^2 + y^3)N^4$$
.

It then exists in k[X] a polynomial G, homogeneous of degree 15, such that its image on $k[\mathcal{F}]$ is g; then we get $\{G=0\} \cdot \mathcal{F} = 12C_5$.

EXAMPLE 2. Classes of rational surfaces whith an affine part isomorphic to a plane. It is easy to determine a class of surfaces $\mathcal{F}_n \subset A^3$ of degree n, for every n > 0, which are isomorphic to a plane and having projective closure non singular in codimension 1 and n-almostfactorial.

P. C. Craighero has pointed this example to me in the case n=4. Let a(T), b(T), c(T) be arbitrary polynomials of k[T] of degree r, s, m respectively for which is

$$rs + 1 = m = n$$
 or $rs = n = m + 1$.

Let us consider the two isomorphisms of A³

$$\eta: (U, V, W) \rightarrow (U' = U + a(W), V' = V, W' = W)$$

and

$$\chi: (U', V', W') \to (U'' = U', V'' = V', W'' = W' + b(U') + c(V'))$$

and their product

$$\chi \circ \eta \colon (U, V, W) \to$$

$$\to \left(U'' = U + a(W), V'' = V, W'' = W + b(U + a(W)) + c(V)\right).$$

The affine surfaces of A3:

$$\mathcal{F}_n = \{Z + b(X + a(Z)) + c(Y) = 0\}$$

are isomorphic to a plane (and more precisely to the plane $\{W''=0\}$) by means of $\chi \circ \eta$ and are of degree n, and, for example, they admit the parametrization

$$X = U - a[-b(U) - c(V)], \quad Y = V, \quad Z = -b(U) - c(V)$$

whose inverse is (U = X + a(Z), V = Y), with Z + b(X + a(Z)) + c(Y) = 0. Such surfaces are then rational and factorial. Their projective closure $\overline{\mathcal{F}}_n$ is non singular in codimension 1; the section of such surfaces with the plane at the infinity is a straight line which is just the complete intersection of such two surfaces. Such a line is the only curve on the surface $\overline{\mathcal{F}}_n$ which is referred to the parametrization of $\overline{\mathcal{F}}_n$: by this $\overline{\mathcal{F}}_n$ is n-almostfactorial.

If the polynomial b(T) is linear (s = 1) such surfaces are monoids; then one can apply Gallarati's criterion to them with the same conclusions.

EXAMPLE 3. Classes of trinomial rational surfaces (of the kind $\{X^a + Y^b = Z^c\}$). Let m, n be coprime positive integers, with m < n. Let (r_0, s_0) a integer solution of the diophantine equation

$$(\alpha) xm - yn = 1.$$

Every other integer solution (r, s) of such equation is

$$(\beta_1) r = r_0 + tn,$$

$$(\beta_2)$$
 $s = s_0 + tm$ for every $t \in \mathbb{Z}$.

For every integer r in (β_1) , we consider the classes of affine surfaces of A^3

$$egin{aligned} & oldsymbol{\mathfrak{E}}_{m,n,r} = \{X^m + \ Y^n = Z^{rm}\} & ext{for } r > 0 \ , \ & oldsymbol{\mathfrak{G}}_{m,n,r} = \{X^m + \ Y^n = Z^{-rm}\} \ , & oldsymbol{\mathscr{K}}_{m,n,r} = \{X^m + \ Y^n = Z^{1-rm}\} & ext{for } r < 0 \ . \end{aligned}$$

One gets a parametrization of such surfaces assuming

$$egin{aligned} x = z^r u \ , & y = z^s v & ext{with } z = (1-v^n)/u^m & ext{for the } \mathcal{E}_{m,n,r} \ , \ & x = z^r u \ , & y = z^s v & ext{with } z = v^n/(1-u^m) & ext{for the } \mathcal{F}_{m,n,r} \ , \ & x = z^{-r} u \ , & y = z^{-s} v & ext{with } z = (1-u^m)/v^n & ext{for the } \mathcal{G}_{m,n,r} \ , \ & x = z^{-r} u \ , & y = z^{-s} v & ext{with } z = u^m/(1-v^n) & ext{for the } \mathcal{R}_{m,n,r} \ , \end{aligned}$$

while for the inverse map we have to assume for the $\mathcal{E}_{m,n,r}$ and $\mathcal{F}_{m,n,r}$:

$$u = x/z^r$$
, $v = y/z^s$

and $u=xz^r$, $v=yz^s$ for the \mathfrak{G}_{mnr} and for the $\mathfrak{K}_{m,n,r}$ respectively. Every surface $\mathfrak{E}_{m,n,r}$ and $\mathfrak{K}_{m,n,r}$ is *m-almostfactorial*, while the surfaces $\mathcal{F}_{m,n,r}$ and $\mathfrak{G}_{m,n,r}$ are *n-almostfactorial*, by Prop. 2 and Prop. 3.

There are other classes of affine rational surfaces which are trinomial and almost-factorial. For example, for every pair of positive integers (m, n) the affine surfaces in A^3 :

$$\mathfrak{B}_{m,n} = \{X^m + Y^n = Z^{mn+1}\}$$
 and $C_{m,n} = \{X^m + Y^n = Z^{mn-1}\}$.

 $\mathfrak{B}_{m,n}$ admits a parametrization $x=z^nu$, $y=z^mv$, $z=u^m+v^n$ whose inverse is $u=x/z^n$, $v=y/z^m$, $\mathfrak{C}_{m,n}$ admits a parametrization $x=z^nu$, $y=z^mv$, $z=1/(u^m+v^n)$ whose inverse is $u=x/z^n$, $v=y/z^m$. The surfaces $\mathfrak{B}_{m,n}$ and $\mathfrak{C}_{m,n}$ are factorial if m, n are coprimes, $\mathfrak{B}_{m,n}$ is (mn+1)-almostfactorial and $\mathfrak{C}_{m,n}$ is (mn-1)-almostfactorial otherwise.

Note the surface $C_{2,3}$ which belongs to the family $C_{m,n}$. By interchanging -z with z, one gets the well known surface $\{x^2 + y^3 + z^5 = 0\}$ which is factorial even if it has a singular point in 0 = (0, 0, 0) (cfr. [5] Example 5.8 p. 420).

REFERENCES

- [1] M. C. Beltrametti F. L. Odetti, On the projectively almost-factorial varieties, Ann. Mat. pura e appl., serie IV, 103 (1977), pp. 255-263.
- [2] P. C. CRAIGHERO R. GATTAZZO, Factorial singularities on quartic rational surfaces of \mathbb{P}^3_k , to appear.
- [3] D. GALLARATI, Ricerche sul contatto di superficie algebriche lungo curve, Acad. Roy. Belg. Cl. Sci. Mem. Coll., 32, 3 (1960), pp. 1-78.
- [4] W. GRÖBNER, Algebraische Geometrie II, Biblio. Inst. Mannhein (1970).
- [5] R. HARTSHORNE, Algebraic Geometry, Springer, New York (1977).
- [6] D. Mumford, Introduction to Algebraic Geometry, Lectures Notes Harvard (1967).
- [7] E. STAGNARO, Le ipersuperficie cubiche di \mathbb{P}_k^4 a superficie intersezione completa e sottoinsieme intersezione completa, Bollettino U.M.I., (4), **12** (1975), pp. 106-114.

Manoscritto pervenuto in redazione il 13 maggio 1987.