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A Criterion for a Rational Projectively Normal Variety
to be Almost-Factorial.

REMO GATTAZZO (*)

SUNTO - Si dimostra che una varieta razionale proiettivamente normale
Y c = dim Y, 6 semifattoriale se e solo se ammette una parame-
trizzazione che gode della seguente proprietà : sono sotto-

insieme intersezione completa di 9 tutte le componenti di Y n 8, dove
8 6 una ipersuperficie di PN legata alla parametrizzazione O’’j). Vengono
date applicazioni ed esempi.

0. Introduction.

In the forthcoming paper  Factorial singularities on rational

quartic surfaces of 1~3 &#x3E;&#x3E;, written in collaboration with P. C. Craighero,
the properties of such surfaces in connection with their parametric
representation on a plane P2 have been deeply investigated. In such
a research, the curves on the surfaces coming from particular points
of the plane, that is the exceptional curves, play a leading role. This

fact has suggested the author the investigation between the relation
on almost-factoriality of rational surfaces and one of its parametric
representation.

This paper presents the answer to the matter. It holds that, if ~
is a rational projectively normal variety, F is almost-factorial iff are
set-theoretic complete intersection on Y only a finite subset of sub-

(*) Indirizzo dell’A.: Istituto di Matematica Applicata, via Belzoni 7,
35100 Padova (Italy).
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varieties of codimension 1 of Y which are referred to the parametrization
(see def. 5); however, among these there are also the exceptional sub-
varieties (see Prop. 1). An immediate affine version of this result
is given and some applications to classes of surfaces of A3 or of P3
are enunciated.

The result is an extension of the well-known criterion of D. Gal-
larati for the almost-factoriality which holds for monoid hypersurfaces
in PN. According to it, one can, for example, tackle the question of the
classification of the almost-factorial rational surfaces of degree four
with only double points.

On the other hand, as it is proved in [1] Prop. 2.11 p. 260, the almost-
factoriality is a non local property which is unaffected by isomorphisms
in the class of the projectively normal varieties. Since P- is factorial

(so almost-factorial), for every n &#x3E; 0 one can find very large classes
of almost-factorial varieties by means of isomorphisms: for example

all the m-ple embeddings of Pn in PN, N = n + m - 1, m &#x3E; 1. Ac-
n

cording to the new result, one can build more models of rational almost-
factorial varieties which are not necessarly isomorphic to some Pn
or to some monoid.

At the end of the paper a rational quartic surface with only double
points which results to be 12-almostfactorial is examined as a detailed
example, y and some classes of rational almost-factorial surfaces of A3
are pointed out as well.

1. Let k be an algebraically closed field of any characteristic.
PNand AN denote respectively the projective and the affine space of
dimension N over k. Variety on PN (or on AN), will mean always an
algebraic irreducible and reduced closed subset on PN (or on AN), N&#x3E; 3.
A prime divisor (or more shortly) a prime on a variety Y, non sin-

gular in codimension 1, will be an irreducible and reduced subvariety
on F of codimension 1. Curves surfaces, hypersurfaces on PN (or
on AN) will be varieties of dimension 1, 2, N - 1 respectively.

Let Y be a variety on PN: denote respectively the
(prime and homogeneous) ideal of T in k[Xo, ... , (= k[X]), the
quotient ring k[X]jJ(:F), the field of rational functions on Y, ( = field
of quotients of elements in k[Y] of same degree).

DEFINITIONS 1. A Variety Y c PN is called projectively normal if
k[Y] is integrally closed.
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2. A prime C on a variety c PN, is set-theoretic complete inter-
section (S.T.C.I.) on Y with multeplicity A, if exists a hypersurface
19 c PN such that ,~ - ~ _ ÂC, i.e. AC is the complete intersection of
Y and 6.

3. A Variety projectively normal is almost-factorial if every

prime C c Y is S.T.C.I. on ~. In particular -% is e-almostfactorial
if every prime C on Y is S.T.C.I. on Y with multeplicity I  e.

Let ;~ be a projective variety of PN, with n = dim ~. We recall
some well known facts (see [4], pp. 107-124) about birational cor-
respondences between projective spaces and in particular between
P" and Y.

. DEFINITION 4. A parametrizaction p on Pn of a projective variety
is a set

of homogeneous polynomials (forms) of the same degree such that

a) substituting

for every P E it follows .P(~ .... HN) = 0;

b) if g denotes the image of G in the canonical projection
k[X] - k[Y] = k[xo, ... , XN], for every G E k[X], there exists a set

of forms of the same degree such that

for a suitable M E k[ U], 

We note that in b) the forms Fo, ... , I’n are chosen in k[X] only
mod J(~T); thus the polynomial M in (2) can change with the set
FO 7... .F’n; however it must be homogeneous from (2) itself. Moreover
(1) and (2) together imply there exists a k-homomorphism between
the fields k(Y) and k( U) of rational functions on Y and P" respectively.
By this, there must exist a suitable (homogeneous) polynomial Q E
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E k[X], Q 0 such that

(see also [4] p. 116). We remark also that for every point A E pn-
- {M = 01 is M(A) = 0, if exists j, for which 0 and,
by (2)

for at least one i, This proves that the parametrization p
rises, by means of (1), to a map

which is regular in lPn - {M = 01 and a,, is invertible by (3).
As above one sees that is surely regular in Y - 

n {Q = 0~, but in general nothing can be said for the points of the set
{Q = 01. If we consider another parametrization q on P" of Y,

being Y irreducible, y we have that the map Gq: rised by q
coincides with a, in an open suitable subset of P". By this they give
a birational map a: pn ~ T(c PN) which may be biregular too. For

example it is what happens in the m-ple embedding 

with

2. In the following we suppose Y c PN to be a rational variety
(i.e. every variety Y for which exists a birational map Y, n =

and let p a parametrization of Y on Pn.
We are precisely concerned with the particular map G’JJ: Y

gived by p and the sets {M = 0} and Y - Y r1 {Q = 0} which
depend from p according to the previous notations, y and the said
situation.

DEFINITIONS 5. Given a parametrization p on Pn of a projective
variety Y, we call referred to p all the subvarieties of codimension 1
in Y which belong to {Q = 0~ .

6. Rational variety of AN will be a variety of AN
whose projective closure is a rational variety in PN.
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The properties of the map c~ in the present hypothesis are well
known; we recall someone of them in the

PROPOSITION 1.a) To every subvariety ‘l~ c Y not referred to p, it

corresponds a subvariety such that dim = dim V and

{M = 0~ (see [4], Satz VI, p. 120)
b) The restriction of d;l to the set of non singular points of 

- ’U r1 IQ = 0} is bijective, moreover to every non singular point cor-
responds cc rtion singular point (see [4] Korollar, p. 121).

Let Y’ and Y be two varieties of dimension n and r a birational

map í: Y’ -~ ~’. We recall that a prime is said exceptional
for í if dim 7:-l(’U)  n - 1. The rational variety Y can have only
a finite number of exceptional primes for the birational map Pn Y:
indeed they can belong among the maximal components of Y n IQ = 0)
for every parametrization p on lPn of Y; they are then referred to every
parametrization p. On the other hand, if the birational map Y

is biregular, no prime of :F is exceptional for it.

LEMMA 1. Let F be a rational variety, Y c PN, and p be a parametri-
zation on Pn of ,~ For each c Y not re f erred to p, it exists at
least an irreducible form Y’ E k[ U] such that

PROOF. Let C1, ... , such that ( C1, ... , C) and
let be

Let us denote always with 0’1): P" -~ ,~ the rational mapping rised
by p and Q E [X], lVl E k[ U] the forms in the (3) and (2) respectively.
First we have

Indeed obviously c ~D1= ... = Ds = 0}; on the other hand, by
Prop. 1.a), is irreducible and of codimension 1 in pn, so it must
be a hypersurface of P". From this = ... = Ds = 01
and will be a principal ideal generated by 
... , jDj and T will be irreducible and T does not divide M. Later,
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being the ring U.F.D. and If = G.C.D{Dl, ..., D8~, there exist
Ai7 Bi E = 1, ... , s, such that

by which 1

Let us consider now the form ... , Fn) E k[X] obtained by
substituting I’i to place of = 0, ... , n. It results

Now we want to calculate its image f n ) in k[Y]. From (3)
it is

by this, from (#) one gets

which belongs to the image of in k[Y], whence

PROPOSITION 2. let Y c PN be a rational projectively normal variety
o f = n and p a pararmetrization of Y on PR. The following are
eq2civatent :

a) Y is almost-factorial;

b) every prime on ~’ referred to p is set-theoretic complete inter-
section on T.

More precisely if C,, ... , Ct are the primes on Y re f erred to p and
is the complete, intersection Y with a suitable hypersur f ace gi c PN,

i = 1, ... , t, then for every prime C c Y it exists a hypersurface G c P"
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such that

that is Y is k-almostfactorial.

PROOF. a) =&#x3E; b) is obvious. So we have only to prove b) =&#x3E; a)
Let Ci , ..., C, be all the primes of Y referred to p. By hypothesis b)
there exist hypersurfaces C, = = 0} c PN and ~, &#x3E; 0, ~ == 1,..., ~
such that

Let A = ..., and let ni, ..., nt be positive integers such
that

For every prime D c Y we denote with C(D) the affine cone of 0 and
let be the affine cone of Y, both in Obviously C(D) has
codimension 1 in for every prime 9) c Y. Moreover the ring

can be considered as the ring of the regular functions on C(Y).
Let .g be the quotient field of k[~’]. For every prime C c Y not re-
ferred to p it exists, by Lemma 1, an irreducible polynomial tp E k[ U]
such that

Let be H = ..., .Fn) E k[X] and let h be its projection in k[Y].
We have

where p = 1 by because C is not referred to p, and Ð1, ..., Dr
are distinct primes on Y, different from C, which are necessarly re-
ferred to p. Indeed, if Di is one of Ðr, it is or exceptional for p
(and then referred to p), or, if it would not be referred to p, the ideal

by Lemma 1 is a principal ideal which contains ’1’ itself.
Since ’1’ is irreducible, then = (’1’) = On the

other hand 0} % {If = 0} and cp is regular in Pn - {M = 0} so
we would have D; = C. So = 1, ..., r, is in any case referred
to p. Of course r t, being t the number of all primes of Y referred
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to p and among them there are Ð1, ... , Ðr. We can suppose that the
primes of Y referred to p in (6) to be Di = C,, ... , Ðr = ~r .

Let us consider now the polynomials Lftivl E k[X], i = 1, ... , r
and we denote with pi their images in 1~[~ ]. Since is

it result, by (4), (5) and (6),

Note (7) means that for every valuation ve of the field K centered in
the subvariety 6 of codimension 1 in is

By this g is an element which belongs to the integral closure of 
by the structure theorem of noetherian integrally closed domains.
On the other hand, being normal because T is projectively normal
(see d3f. 1), g E k[~]. It exists then at least a homogeneous G e k[X]
such that its projection in is g. Moreover we get

We note that the integer A in (8) does not depend on C but only
on all the primes referred to p. So Y is £-almostfactorial.

REMARK 1. Prop. 2 is an extension of a well known criterion of
D. Gallarati on the monoid hypersurfaces ~ c PN (see [3], cap. III,
17, p. 38, and also [7], Prop. 1 ) :

Every prime of fl is set-theoretic complete intersection o f ~ iff all
the primes of the cone of the straight lines passing through the vertex of
~ acre set-theoretic complete intersection.

Indeed the projection from the vertex V of ~ onto a hyperplane
not passing through V, gives a parametrization of jKj on that hyper-
plane. The primes of JC referred to this parametrization are just the
primes of the cone of straight lines of ~ passing through V. They
are all exceptional too.
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REMARK 2. Prop. 2 also shows that the image Y of a m-ple em-

bedding of Pn in PN is m-almostfactorial (fact

well known). Indeed in the usually parametrization p of Y on Pn
(see [4], pag. 124 for example) is referred to p a prime C c Y which
can be supposed to be the image of a hyperplane of Pn. It results that
me is just the complete intersection of F with a suitable hyperplane
in PN. Since F is projectively normal one gets that F is m-almost-
factorial.

We can f ormulate an affine version of Prop. 2 in the following

PROPOSITION 3. Let 8 c AN be a rational normal variety. The fol-
lowing facts are equivalent:

a) ~ is almost- factorial;

b) every prime ea referred to a parametrization p of the pro-
jective closure g is on 8.

PROOF. Let Y = I be the projective closure of E and Ca c 8 be
a prime whose projective closure C = Ca is not referred to the param-
etrization of Y. To obtain relation (7) we argue as in Prop. 2. (7)
induces on 6

where ga now belongs to the quotient field of 8. Since 8 is normal,
the ring 1~[~] coincides with its integral closure. The arguments as at
the end of the proof of Prop. 2 prove that ga E k[~]. So it exists a
suitable polynomial G for which it results

This proves b) =&#x3E; a), while a) =&#x3E; b) is obvious.

3. Applications and examples.

It is well known that a hypersurface Y c PN is projectively normal
iff is non singular in codimension 1 (see [6] Prop. 1 p. 389 and Prop 2
p. 391) arguing, in the projective case, on the affine cone In

the case of surfaces of P3 we can apply Prop. 2 to state the
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COROLLARY 1..A rational non singular surface Y E P3 is almost-

factorial only if it is a plane. (So it is factorial).

PROOF. Let d be the degree of Y. Since Y is non singular and
rational, the geometric genus

So, if Y is not a plane, Y is a non singular quadric or cubic. But these
surfaces are not almost-factorial (see [3], or [7]).

COROLLARY 2. A rational surface Y c P3 of degree d &#x3E; 1 is almost-

factorial if only if it has a positive ( f inite) n2cmber of singular points,
and has a parametrization p on P2 such that very curve on Y which
is referred to p is S.T.C.I. of Y.

PROOF. It follows from Prop. 2 and from what we have recalled
about the condition for a hypersurface of PN to be projectively normal.

EXAMPLE 1. A quartic surface in P3 with only two double singular
points. Let us denote with {T, X, Y, Z} the coordinates in P3. Let Y be :

The surface is singular only in the double points (1, 0, 0, 0) and
(o,1, 0, 0).
A parametrization p of Y is, for example, given by

because we have, first

secondly, let us choose Fo = Z2, .Fl = TX, F2 = YZ E k[T, X, Y, Z].
We can consider then the rational map



291

The restriction on Y, of the map

is just (1-1. Indeed for every F e k[T, X, Y, Z] let f be the canonical

projection of F in

one gets the relations

from which it results Q = TY6Z6. Moreover the product-map

is the identity on Y, while the identities

show that one must assume V6 W3( W2 -- U2) 2 and they prove
that the product-map

is the identity on P2. The components of Y r1 {Q = 0)} are

and they are the curves on Y referred to p.
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Now we have to prove that every such curves is S.T.C.I. of Y.

Clearly is

Let us consider on F the divisor defined by the quotient

It is just the divisor of 2tx2 - 2xz2 + y3 because in equality
z4 = t(tx2 + y3) holds. From this, it follows

By the same arguments one gets

Since every curve of F referred to p is S.T.C.I. on Y we can apply to ,~
Prop. 2: Y is then almost-factorial; more precisely Y is 12-almostfac-
torial.

As example let us consider the rational curve

e5 belongs to Y. The curve e5 belongs even to the surfaces +
+ TXZ- T Y2 = 0}, (Y2Z + TXY + 2TXZ - T Y2 = 0} etc., and
even to the quadric Q = {TX -~- YZ - Z2 =0}. The images on P2,
by means of of the intersections with Y of such surfaces are curves
of which a common component, not component of {M = 0~ _
= ~2 ) 2 = O}, is the + V’ - W = 0~ . By this we
can suppose P(W, U, V) = U + V - W, so TJ(FO, I’2) = TX +
+ YZ - 22.

On the other hand it is

Now e2 and R are S.T.C.I. on Y, so it is also C, with multeplicity at
most 12. It is enough to consider on Y the divisor defined by the
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quotient

Indeed in the identities

hold; I which give, first

where we have assumed, for example, y

Secondly, y the divisor of the quotient

coincides with the divisor of

It then exists in k[X] a polynomial G, homogeneous of degree 15,
such that its image on is g; then we get {G = 0}’~= 1265.

EXAMPLE 2. Classes of rational surfaces whith an affine part iso-
morphic to a plane. It is easy to determine a class of surfaces Fn c A3
of degree n, for every n &#x3E; 0, which are isomorphic to a plane and having
projective closure non singular in codimension 1 and n-almostfactorial.

P. C. Craighero has pointed this example to me in the case n = 4.
Let a(T), b(T), c(T) be arbitrary polynomials of k[T] of degree

r, s, m respectively for which is
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Let us consider the two isomorphisms of A3

and

and their product

The affine surfaces of A3:

are isomorphic to a plane (and more precisely to the plane {W~ = 0})
by means of Zoi7 and are of degree n, and, for example, they admit
the parametrization

whose inverse is ( U = X -E- a(Z), V = Y), with Z + b(X -~- a(Z)) +
-E- c( Y) = 0. Such surfaces are then rational and factorial. Their

projective closure 3f n is non singular in codimension 1; the section
of such surfaces with the plane at the infinity is a straight line which
is just the complete intersection of such two surfaces. Such a line is
the only curve on the surface Fn which is referred to the parametrization
of 5n : by this Yn is n-almostfactorial.

If the polynomial b(T) is linear (s = 1) such surfaces are monoids;
then one can apply Gallarati’s criterion to them with the same con-
clusions.

EXAMPLE 3. Classes of trinomial rational surfaces (of the kind
~Xa + Yb = 2!~}). Let m, n be coprime positive integers, with m  n.

Let (ro, so) a integer solution of the diophantine equation
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Every other integer solution (r,8) of such equation is

For every integer r in (f3l)’ we consider the classes of affine surfaces
of A3

One gets a parametrization of such surfaces assuming

while for the inverse map we have to assume for the and ·

and U = xzr, v = yzs for the and for the respectively.
Every surface and Jem,n,T is m-atmostfactorial, while the surfaces

and gm,n,r are by Prop. 2 and Prop. 3.
There are other classes of affine rational surfaces which are trinomial

and almost-factorial. For example, for every pair of positive integers
(m, n) the affine surfaces in ~3:

admits a parametrization x = zn u, y = zm v, z = um + vn whose
inverse is u = v = yjzm, Cm,n admits a parametrization x = zn u,
y = zm v, z = 1 /(um + vn) whose inverse is u = x/zn, v = ylz-. The
surfaces and are factorial if m, n are coprimes, $m,n is (mn +
+ 1)-almostfactorial and Cm,n is (mn - 1 )-ahnost f acctoriact otherwise.
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Note the surface C2,3 which belongs to the family By inter-
changing - z with z, one gets the well known surface (z2 + y3 + z5= 0}
which is factorial even if it has a singular point in 0 = (0, 0, 0) (cfr. [5]
Example 5.8 p. 420).
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