@article{RSMUP_1988__80__215_0, author = {Franzen, Berthold and G\"obel, R\"udiger}, title = {Prescribing endomorphism algebras. {The} cotorsion-free case}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {215--241}, publisher = {Seminario Matematico of the University of Padua}, volume = {80}, year = {1988}, mrnumber = {988123}, zbl = {0673.16021}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1988__80__215_0/} }
TY - JOUR AU - Franzen, Berthold AU - Göbel, Rüdiger TI - Prescribing endomorphism algebras. The cotorsion-free case JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1988 SP - 215 EP - 241 VL - 80 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1988__80__215_0/ LA - en ID - RSMUP_1988__80__215_0 ER -
%0 Journal Article %A Franzen, Berthold %A Göbel, Rüdiger %T Prescribing endomorphism algebras. The cotorsion-free case %J Rendiconti del Seminario Matematico della Università di Padova %D 1988 %P 215-241 %V 80 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1988__80__215_0/ %G en %F RSMUP_1988__80__215_0
Franzen, Berthold; Göbel, Rüdiger. Prescribing endomorphism algebras. The cotorsion-free case. Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988), pp. 215-241. http://archive.numdam.org/item/RSMUP_1988__80__215_0/
[1] Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. | MR | Zbl
,[2] Endomorphism rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra, 1965 (Gordon and Breach, New York, 1967), pp. 59-69. | Zbl
,[3] Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3), 50 (1985), pp. 447-479. | MR | Zbl
- ,[4] R. GÖBEL, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. | MR | Zbl
-[5] R. GÖBEL, Every cotorsion-free algebra is an endomorphism algebra, Math. Z., 181 (1982), pp. 451-470. | MR | Zbl
-[6] R. GÖBEL, Torsion-free abelian groups with prescribed finitely topologized endomorphism rings, Proc. Amer. Math. Soc., 90 (1984), pp. 519-527. | MR | Zbl
-[7] Infinite abelian groups, Vols. I, II (Academic Press, New York, 1970, 1973). | MR | Zbl
,[8] On semi-rigid classes of torsion-free abelian groups, J. Algebra, 93 (1985), pp. 136-150. | MR | Zbl
- ,[9] Modules over arbitrary domains, Math. Z., 188 (1985), pp. 325-337. | MR | Zbl
- ,[10] Modules over arbitrary domains II, Fundamenta mathematicae, 126 (1986), pp. 217-243. | MR | Zbl
- ,[11] On stout and slender groups, J. Algebra, 35 (1975), pp. 39-55. | MR | Zbl
,[12] The existence of rigid systems of maximal size, Proceedings of the international conference on abelian groups held at CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce), pp. 189-202. | MR | Zbl
,[13] Wachstumstypen und schlanke Gruppen, Sympos. Math., 23 (1979), pp. 201-239. | MR | Zbl
- ,[14] V. D. MAZUROV - Y. I. MERZLYAKOV - V. A. CHURKIN (editors), The Kourovka Notebook, Unsolved Problems in Group Theory, Amer. Math. Soc. Transl., 121 (1983) (first ed. 1965). | MR | Zbl
[15] Infinite abelian groups (The University of Michigan Press, Ann Arbor, 1971). | MR | Zbl
,[16] Existence of rigid-like families of abelian p-groups, Model theory and algebra, Lecture Notes in Mathematics 498 (Springer, Berlin, 1975), pp. 384-402. | MR | Zbl
,[17] Classification theory (North Holland, Amsterdam, 1978). | MR
,[18] A combinatorial principle and endomorphism rings. - I: On p-groups, Israel J. Math., 49 (1984), pp. 239-257. | MR | Zbl
,[19] A combinatorial theorem and endomorphism rings of p-groups, pp. 37-86, CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce). | MR | Zbl
,