@article{RSMUP_1989__81__85_0, author = {Del Santo, Daniele}, title = {Uniqueness of the {Cauchy} problem for a second order operator}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {85--93}, publisher = {Seminario Matematico of the University of Padua}, volume = {81}, year = {1989}, mrnumber = {1020188}, zbl = {0699.35039}, language = {en}, url = {http://archive.numdam.org/item/RSMUP_1989__81__85_0/} }
TY - JOUR AU - Del Santo, Daniele TI - Uniqueness of the Cauchy problem for a second order operator JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1989 SP - 85 EP - 93 VL - 81 PB - Seminario Matematico of the University of Padua UR - http://archive.numdam.org/item/RSMUP_1989__81__85_0/ LA - en ID - RSMUP_1989__81__85_0 ER -
%0 Journal Article %A Del Santo, Daniele %T Uniqueness of the Cauchy problem for a second order operator %J Rendiconti del Seminario Matematico della Università di Padova %D 1989 %P 85-93 %V 81 %I Seminario Matematico of the University of Padua %U http://archive.numdam.org/item/RSMUP_1989__81__85_0/ %G en %F RSMUP_1989__81__85_0
Del Santo, Daniele. Uniqueness of the Cauchy problem for a second order operator. Rendiconti del Seminario Matematico della Università di Padova, Tome 81 (1989), pp. 85-93. http://archive.numdam.org/item/RSMUP_1989__81__85_0/
[1] E. C. ZACHMANOUGLOU, Unique continuation of solutions of partial differential equations and inequalities from manifolds of any dimension, Duke Math. J., 45 (1978), pp. 1-13. | MR | Zbl
-[2] On the Cauchy Problem, Science Press, Beijing (1985). | MR | Zbl
,[3] Uniqueness and non-uniqueness in the Cauchy problem for a class of operators of degenerate type, J. Diff. Equat., 51 (1984), pp. 78-96. | MR | Zbl
,[4] Non-uniqueness in the Cauchy problem for partial differential operators with multiple characteristics - I, Comm. P.D.E.'s, 9 (1) (1984), pp. 63-106. | MR | Zbl
,[5] Uniqueness in the Cauchy problem for a degenerated elliptic second order equation, in Differential Geometry and Complex Analysis, Springer-Verlag, Berlin (1985), pp. 213-218. | MR | Zbl
,[6] On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 569-586. | MR
,[7] L'unicité du prolongement des équations elliptiques dégénérées, Tohoku Math. J., 34 (1982), pp. 239-249. | MR | Zbl
,[8] Uniqueness in the Cauchy Problem, Birkäuser, Boston (1983). | MR | Zbl
and -[9] Second order elliptic equations and the uniqueness of the Cauchy problem, Bol. Soc. Bras. Mat., 12, n. 2 (1981), pp. 27-32. | MR | Zbl
,