RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ALBERTO TONOLO

On a class of strongly quasi injective modules

Rendiconti del Seminario Matematico della Università di Padova, tome 82 (1989), p. 115-131

http://www.numdam.org/item?id=RSMUP 1989 82 115 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1989, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On a Class of Strongly Quasi Injective Modules.

ALBERTO TONOLO (*)

0. Introduction.

- 0.1 Let R be a ring with $1 \neq 0$, ${}_RK$ a unitary left R-module, $A = \operatorname{End}({}_RK)$; denote by $\mathfrak{D}(K_A)$ the full subcategory of Mod-A cogenerated by K_A and by $\mathcal{C}({}_RK)$ the full subcategory of R-TM consisting of all modules which are topologically isomorphic to a closed submodule of a topological product ${}_RK^x$, where X is a set and ${}_RK$ is endowed with the discrete topology. The modules belonging to $\mathfrak{D}(K_A)$ are called K-discrete, those belonging to $\mathcal{C}({}_RK)$ are called K-compact.
- o.2 Let $M \in \mathfrak{D}(K_A)$; M^* will denote the module $\operatorname{Hom}_A(M, K_A)$ with the topology that has as basis of neighbourhoods of zero $W(F) = \{\xi \in \operatorname{Hom}_A(M, K_A) : \xi(F) = 0\}$, where F is a finite subset of M; it will be called the character module or the dual of M. Let now $N \in C(R)$; the abstract right A-module $\operatorname{Chom}(N, R)$ of continuous R-morphisms of N into R, called the character module or the dual of N, will be denoted by N^* . Associating to each K-discrete module its dual and to each morphism its transposed, gives a contravariant functor $\Lambda_1 \colon \mathfrak{D}(K_A) \to \mathfrak{C}(R)$. In a similar way we define a contravariant functor $\Lambda_2 \colon \mathfrak{C}(R) \to \mathfrak{D}(K)$. Let $\Lambda_K = (\Lambda_1, \Lambda_2)$; we say that Λ_K is a duality if for each $M \in \mathfrak{D}(K)$ and for each $N \in \mathfrak{C}(R)$, the natural canonical morphisms $M_M \colon M \to M^{**}$, $M_N \colon N \to N^{**}$ are respectively an isomorphism and a topological isomorphism. Next we call
- (*) Indirizzo dell'A.: Dipartimento di Matematica Pura ed Applicata, via Belzoni 7, 35131 Padova.

 Δ_K a good duality if Δ_K is a duality and C(R) has the extension property of characters (in short E.P.), i.e. if, for each $M \in C(R)$ and each topological submodule L of M, any character of L extends to a character of M. A (topological) R-module M is quasi-injective (in short q.i.) if every (continuous) morphism of any submodule of M into M extends to a (continuous) endomorphism of M. A (topological) R-module M is strongly quasi-injective (in short s.q.i.) if for every (closed) submodule M of M and for every element M0 extends to a (continuous) endomorphism M1. A (topological) M2 any (continuous) morphism M3 extends to a (continuous) endomorphism M4 and for every element M5 any (continuous) morphism M5. A (topological) M5 and for every element M6 and for every element M8 any (continuous) morphism M9. Claudia Menini and Adalberto Orsatti [M.O.1] proved that M6 is a good duality if and only if M6 is s.q.i.

0.3 The purpose of this paper is to study the s.q.i. modules $_RK$ for which Δ_K is a good duality between $\mathrm{C}(_RK)$ and $\mathrm{Mod}\text{-}A$; we have achieved the following results:

THEOREM A (Th. 1.6). $C(_RK)$ is an abelian category if and only if $\mathfrak{D}(K_A) = \text{Mod-}A$, i.e. K_A is a cogenerator of Mod-A.

In order to obtain more precise results we have introduced the notion of strongly abelian category of topological modules and we have proved:

THEOREM B (Th.s 1.8-1.9). $C(_RK)$ is a strongly abelian category if and only if K_A is an injective cogenerator of Mod-A.

When K_A is an injective cogenerator of Mod-A, we have a complete description:

THEOREM C (Th. 1.11). Let R_{τ} be a left l.t. Hausdorff ring, ${}_{R}K \in \mathcal{C}_{\tau}$ an injective cogenerator of \mathcal{C}_{τ} with essential socle, $A = \operatorname{End}({}_{R}K)$. The following conditions are equivalent:

- a) $C(_RK)$ is a strongly abelian category,
- $b) \quad \mathrm{C}(_{R}K) = R_{\tau}\text{-}LC_{*},$
- c) $_{R}K$ is l.c.d.,
- d) K_A is an injective cogenerator of Mod-A,
- e) A_A is l.c.d. and every f.g. submodule of $_RK$ is l.c.d.,
- f) A_A is l.c.d. and K_A is q.i.,
- g) $\Delta_{\scriptscriptstyle K}$ is a good duality between Mod-A and R_{τ} -LC_{*}.

0.4 In the second part we carefully investigate the case when K_A is a cogenerator of Mod-A. We have a description of the exact sequences in $C(_RK)$, (Th.s 2.1-2.4); we prove that in this case A_A is l.c.d., A/J(A) is semisimple artinian, $Soc(_RK) = Soc(K_A)$ they are both essential (Prop. 2.7) and we obtain a structure theorem for $_RK$ (Th. 2.10). Although the conditions on $_RK$ are very particular, it is not clear if they are sufficient to characterize the s.q.i. modules $_RK$ such that $C(_RK)$ is an abelian category.

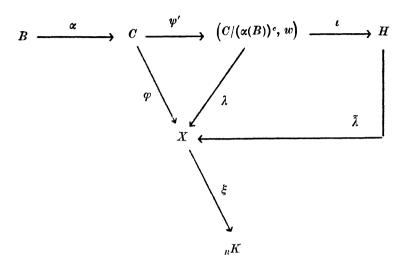
Finally in the third part we have obtained an example of a good duality Δ_K between $C(_RK)$ and Mod-A where K_A is a cogenerator not-injective of Mod-A that justifies the different treatment in the cases K_A cogenerator and K_A injective cogenerator of Mod-A.

Acknowledgement. It is a pleasure for me to thank Adalberto Orsatti, who stated the problem, and Enrico Gregorio for their helpful comments and suggestions.

1. Δ_K dualities and abelian categories.

- 1.1 Let R be a ring, ${}_{R}K$ a left R-module; endow R with the K-topology τ and denote by $R_{\tau \wedge}^{\wedge}$ the Hausdorff completion of R_{τ} . From the topological embeddings $R/\mathrm{Ann}_{R}(K) \leqslant R^{\wedge} \leqslant K^{\kappa}$ it follows that the topology τ^{\wedge} of R^{\wedge} coincides with the K-topology of R^{\wedge} . Let R_{τ} -LT the category of all l.t. Hausdorff left modules over R_{τ} ; if $M \in R_{\tau}$ -LT is a complete module, then in natural way $M \in R_{\tau \wedge}^{\wedge}$ -LT and each continuous R-morphism between complete modules belonging to R_{τ} -LT is a R^{\wedge} -morphism. Since $\mathrm{End}\,({}_{R}{}^{\wedge}K) = \mathrm{End}\,({}_{R}K)$ and $\mathrm{C}({}_{R}{}^{\wedge}K) = \mathrm{C}({}_{R}K)$, we may assume, without loss of generality, R_{τ} complete and Hausdorff.
- 1.2 The category $C(_RK)$ of K-compact R-modules is obviously preadditive and closed under topological products; given any morphism in $C(_RK)$ there exists the kernel (the usual one) and, if $_RK$ is s.q.i., also the cokernel. Let $\alpha \colon B \to C$ be a morphism in $C(_RK)$, we denote by H the Hausdorff completion of $(C/(\alpha(B)^c, w))$, where w is the weak topology of characters of $C/(\alpha(B))^c$ endowed with quotient topology. By proposition 2.6 of [M.O.1] it is easy to prove that H is an object of $C(_RK)$.
- 1.3 PROPOSITION. Let $_RK$ be a s.q.i. module; given a morphism $\alpha: B \to C$ in $C(_RK)$, we have Coker $\alpha = (C/(\alpha(B)^c, w))^{\wedge}$.

PROOF. Let $\varphi: C \to X$ be a morphism in $C(_RK)$ with $\alpha \varphi = 0$ and ξ be a character of X; let us consider the diagram



where ψ' and ι are respectively the natural projection and embedding. Set $\psi = \psi' \iota$, obviously ψ is continuous and $\alpha \psi = \alpha(\psi' \iota) = 0$. Being $\varphi|_{(\alpha(B))^c} = 0$, there exists an algebraic morphism $\lambda \colon C/(\alpha(B))^c \to X$ with $\varphi = \psi' \lambda$. $\varphi \xi$ is a character of C equal to zero on $(\alpha(B))^c$, then $\lambda \xi$ is a character of $(C/(\alpha(B))^c, w)$ hence it is continuous; having X the weak topology of characters, λ is continuous for the arbitrary choice of ξ . Being X complete and Hausdorff, λ extends to a continuous morphism $\tilde{\lambda} \colon H \to X$ with $\varphi = \psi \tilde{\lambda}$.

For what we have seen above C(R) is an abelian category if and only if for any morphism $\alpha: B \to C$ in C(R), Coker (ker α) and Ker (coker α) are isomorphic; having previously identified B/K or α and $\alpha(B)$, this happen only when the weak topology w_1 of characters of B/K or α , endowed of quotient topology, and the topology w_2 of $\alpha(B)$, as topological submodule of C, coincide.

- 1.4 DEFINITION. If in the above context w_1 and w_2 coincide and are complete, we say that $C(_RK)$ is a strongly abelian category.
- 1.5 Proposition. In the category $\mathfrak{D}(K_A)$ monomorphisms are injective; if $\mathfrak{D}(K_A)$ is an abelian category its epimorphisms are surjective.

Proof. The first statement is obvious; next if $f: M \to N$ is an epimorphism then, remembering that $\mathfrak{D}(K_A)$ is closed under submodules, $f(M) \to N$ is a monomorphism and an epimorphism, hence an isomorphism in $\mathfrak{D}(K_A)$, i.e. a usual bijective morphism of modules.

1.6 THEOREM. Let $C(_RK)$ be an abelian category; if Δ_K is a duality between $C(_RK)$ and $D(K_A)$, then $D(K_A) = \text{Mod-}A$, i.e. K_A is a cogenerator.

PROOF. Let $M \in \text{Mod-}A$, M is an homomorphic image of $A^{(x)}$; since ${}_{R}K^{*} = A$ we have $A^{(x)} \in \mathfrak{D}(K_{A})$. The kernel L in Mod-A of $A^{(x)} \to M$ belongs to $\mathfrak{D}(K_{A})$. The dualities preserves the abelian categories, hence $\mathfrak{D}(K_{A})$ is abelian; consider then the exact sequence in $\mathfrak{D}(K_{A})$

$$(*) 0 \to L \xrightarrow{f} A^{(X)} \xrightarrow{\psi} \operatorname{Coker}_{\mathfrak{D}(K)}(f) \to 0 ;$$

By the above proposition f is injective and ψ is surjective. Obviously $f(L) \subseteq \operatorname{Ker} \psi$; next we consider $\iota \colon f(L) \to \operatorname{Ker} \psi = \operatorname{Ker} (\operatorname{coker} f) = \operatorname{Im} f$ in $\mathfrak{D}(K_A) \colon \iota$ is a monomorphism and an epimorphism in $\mathfrak{D}(K_A)$ and so it is an isomorphism. Then the sequence (*) is exact also in Mod-A and it results $M \cong A^{(x)}/L \cong \operatorname{Coker}_{\mathfrak{D}(K)}(f) \in \mathfrak{D}(K_A)$.

1.7 Proposition. If $C(_RK)$ is a strongly abelian category, then epimorphisms in $C(_RK)$ are surjective.

PROOF. Let $f: M \to N$ be an epimorphism in $C(_RK)$; we consider the exact sequence in $C(_RK)$ $0 \to \operatorname{Ker} f \xrightarrow{i} M \xrightarrow{f} N \to 0$; if w is the weak topology of characters on $(M/\operatorname{Ker} f, q)$ then $N \cong (M/\operatorname{Ker} f, w)$ topologically, for $(M/\operatorname{Ker} f, w) \in C(_RK)$ is the cokernel of i.

1.8 THEOREM. Let $C(_RK)$ be a strongly abelian category and Δ_K a duality between $\mathfrak{D}(K_A)$ and $C(_RK)$; then K_A is an injective cogenerator of Mod-A.

PROOF. By theorem 1.6, K_A is a cogenerator of Mod-A; we consider the injective hull $E = E(K_A)$ of K_A in Mod-A. The functor $\Delta_1 = \operatorname{Hom}(\cdot, K_A)$ transposes the inclusion $K_A \stackrel{i}{\to} E$ in an epimorphism $\operatorname{Hom}_A(E, K_A) \stackrel{i^*}{\to} \operatorname{Hom}_A(K_A, K_A)$ of $\operatorname{C}(_RK)$. By proposition 1.5, i^* is surjective, hence the identity morphism of K_A extends to a morphism $E \to K_A$; then K_A is a direct summand of E and so $K_A = E = E(K_A)$.

1.9 THEOREM. Let Δ_K be a good duality between $\mathfrak{D}(K_A)$ and $\mathfrak{C}(_RK)$; if K_A is an injective cogenerator of Mod-A, then $\mathfrak{C}(_RK)$ is a strongly abelian category.

PROOF. $C(_RK)$ is an abelian category since $\mathfrak{D}(K_A) = \operatorname{Mod-}A$ and Δ_K is a duality. By theorem 17.1 of [M.O.2] $_RK$ is l.c.d., hence each module belonging to $C(_RK)$ is l.c.; given $M \in C(_RK)$ and a closed submodule L of M, (M/L,q) is linearly compact, since it is a Hausdorff quotient of a l.c. module; moreover M/L endowed with the weak topology of characters, wich is coarser than q, is still l.c. and hence complete.

1.10 Let $M_{\varepsilon} \in R_{\tau} \cdot LT$; we denote by ε_* the Leptin topology, i.e. the topology on M having as a basis of neighbourhoods of 0 all the open cofinite submodules of M_{ε} . We denote by $R_{\tau} \cdot LC_*$ the full subcategory of $R_{\tau} \cdot LT$ consisting of all $M_{\varepsilon} \in R_{\tau} \cdot LT$ such that M_{ε} is l.c. and $\varepsilon = \varepsilon_*$. If M is l.c. it is known (see [W.]) that among all topologies equivalent to ε there exists a finest one which will be denoted by ε^* . The topology ε^* has as a basis of neighbourhoods of 0 in M the closed submodules H of M_{ε} such that M/H is l.c.d. We indicate with \mathcal{C}_{τ} the class of the τ -torsion left R_{τ} -modules, i.e.

$$\mathfrak{F}_{\tau} = \{ \textbf{\textit{M}} \in R_{\tau}\text{-}T\textbf{\textit{M}} \colon \forall x \in \textbf{\textit{M}}, \operatorname{Ann}_{R}(x) \text{ is open in } R_{\tau} \}.$$

- 1.11 THEOREM. Let R_{τ} be a left l.t. Hausdorff ring, $_RK \in \mathcal{C}_{\tau}$ an injective cogenerator of \mathcal{C}_{τ} with essential socle, $A = \operatorname{End}(_RK)$. The following conditions are equivalent:
 - i) $C(_RK) = R_\tau LC_*$
 - ii) $_{R}K$ is l.c.d.,
 - iii) K_A is an injective cogenerator of Mod-A,
 - iv) A_A is l.c.d. and every f.g. submodule of $_RK$ is l.c.d.,
 - v) A_A is l.c.d. and K_A is q.i.,
 - vi Δ_K is a good duality between Mod-A and R_{τ} -LC_{*}.

PROOF. i) \Rightarrow ii) $_RK$ endowed with the discrete topology belongs to $C(_RK)$, hence it is l.c.d.

- ii) \Rightarrow i) Let us prove that $C(_RK) \subseteq R_\tau LC_\star$. Let $M_\varepsilon \in C(_RK)$: since $_RK$ is l.c.d., M_ε is l.c. Next $\varepsilon = \varepsilon_\star$: in fact $_RK$, being l.c.d. with essential socle, is finitely generated and so for each character f of M, being $M/\mathrm{Ker}\ f$ a submodule of $_RK$, $\mathrm{Ker}\ f$ is cofinite. $C(_RK) \supseteq R_\tau LC_\star$: let $M_\varepsilon \in R_\tau LC_\star$, since $_RK$ is an injective cogenerator of $R_\tau LT$, the K-characters of M_ε separate the points of M; then, by the minimality of ε , $M_\varepsilon \in C(_RK)$.
- ii) \Rightarrow iii) $_RK$ is an injective cogenerator of \mathcal{C}_τ , then $_RK$ is s.q.i. and hence a selfcogenerator; by theorem 9.4 of [M.O.1] K_A is injective. Let S_A be a simple module; we consider the exact sequence $0 \to P \xrightarrow{\iota} A \to S \to 0$ with P a right maximal ideal of A. K_A injective implies that $\operatorname{Hom}(\cdot, K_A)$ is an exact functor, so that we have the exact sequence $0 \to \operatorname{Hom}_A(S, K_A) \to _RK \xrightarrow{\iota^*} \operatorname{Hom}_A(P, K_A) \to 0$. If $\operatorname{Hom}_A(S, K_A) = 0$, ι^* is a continuous isomorphism from $_RK$ into $\operatorname{Hom}_A(P, K_A)$; being the discrete topology equal to the Leptin topology, it is the only Hausdorff linear one on $_RK$ and $\operatorname{Hom}_A(P, K_A) \cong _RK$ topologically. Since Δ_K is a duality, ι must be an isomorphism: absurd!
 - iii) \Rightarrow ii) Clear by theorem 9.4 of [M.O.1].
 - ii) \Rightarrow iv) Let

$$a \equiv a_i \bmod J_i (i \in I)$$

be a finitely solvable system of congruences with $(J_i)_{i\in I}$ a family of right ideals of A. Let $L=\sum_{i\in I}\operatorname{Ann}_K(J_i)\leqslant_R K$; we define a R-morphism $g\colon L\to_R K$ by setting $g\left(\sum_{i\in F}x_i\right)=\sum_{i\in F}x_ia_i$ where F is a finite subset of I and, for each $i\in I$, $x_i\in\operatorname{Ann}_K(J_i)$; this is a good definition because (*) is finitely solvable. $_RK$ is s.q.i. hence q.i., and so g extends to an endomorphism g^{\wedge} of $_RK$; g^{\wedge} is the right moltiplication by an element $a\in A$, thus for each $i\in I$ and for each $x\in\operatorname{Ann}_K(J_i)$ we have $g(x)=xa=xa_i$ and hence $a-a_i\in\operatorname{Ann}_A\left(\operatorname{Ann}_K(J_i)\right)=J_i$ since K_A is a cogenerator.

iv) \Rightarrow ii) By theorem 9.4 of [M.O.1] it is sufficient to prove that K_A is injective. Let H be a right ideal of A and $f\colon H\to K_A$ a morphism; set σ equal to the K-topology of A; since A is l.c.d. every right ideal of A is closed in σ . Being $R\leqslant K^{\kappa}$, it is l.c. with the K-topology; Soc ($_RK$) is essential in $_RK$, $_RK$ is s.q.i. therefore by theorems 2.8 and 2.10 of [D.O.1] we find that K_A is s.q.i. and Soc (K_A) is essential in K_A : then Im f is finitely cogenerated. There exists a finite number

of simple A-submodules S_i with i=1,...,N of K_A such that Im $f\leqslant \bigoplus_{i=1}^N E(S_i)$ and hence f extends to a morphism $f^{\wedge}\colon A\to \bigoplus_{i=1}^N E(S_i)$. Let $x=f^{\wedge}(1)\colon \text{then } x=x_1+...+x_N$ with $x_i\in E(S_i)$ and $\bigcap_{i=1}^N \operatorname{Ann}_A(x_i)=$ $=\operatorname{Ann}_A(x)=\operatorname{Ker} f^{\wedge}\geqslant \operatorname{Ker} f;$ moreover $\operatorname{Ann}_A(x_i)$ is closed in A_{σ} and completely irriducible for all i, hence it is open in A_{σ} . Therefore $\operatorname{Ker} f=H\cap \operatorname{Ker} f^{\wedge}$ is open in H with the relative topology of σ and, K_A being s.q.i., f extends to a morphism $A\to K_A$.

- iv)⇔v) See proposition 1.5 of [M.1]
- i)⇔vi) is obvious.
- 1.12 COROLLARY. Let R_{τ} be a left l.t. Hausdorff ring, $_RK \in \mathcal{C}_{\tau}$ an injective cogenerator of \mathcal{C}_{τ} with essential socle, $A = \operatorname{End}(_RK)$; then $C(_RK)$ is a strongly abelian category if and only if it is closed with respect to Hausdorff quotients.

PROOF. R_{τ} - LC_{\star} is closed with respect to Hausdorff quotients.

2. Structure theorems.

In the rest of the paper ${}_{R}K_{A}$ will be a faithfully balanced bimodule with ${}_{R}K$ s.q.i. and K_{A} cogenerator; under this assumptions Δ_{K} will be a good duality between Mod-A and $C({}_{R}K)$.

- 2.1 THEOREM. Let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be an exact sequence in Mod-A; if we consider the trasposed sequence $N^* \xrightarrow{g^*} M^* \xrightarrow{f^*} L^*$, then
 - a) g^* is a topological embedding,
 - b) Ker $f^* = Im g^*$,
 - c) $(f^*(M^*))^c = L^*$.

PROOF. a) Clearly g^* is injective and continuous, in addition it is also open: any neighbourhood of zero in N^* is of the form $W(F) = \{\varphi \in N^* : \varphi|_F = 0\}$ with $F = \langle x_1, ..., x_n \rangle$ a finitely generated submodule of N; let $y_i \in M$ be such that $g(y_i) = x_i$ (i = 1, ..., n) and set $G = \langle y_1, ..., y_n \rangle$. We claim that $g^*(W(F)) \supseteq W(G) \cap \text{Im } g^*$: if $\xi \in W(G) \cap \text{Im } g^*$, $\xi = g^*(\eta)$ it is $\xi = \eta \circ g$ with $\eta \in N^*$; in this way we have $0 = \xi(y_i) = \eta \circ g(y_i) = \eta(x_i)$, consequently $\eta \in W(F)$ and then $\xi \in g^*(W(F))$.

- b) It is obvious since $\Delta_1 = \text{Hom } (\cdot, K_A)$.
- c) Let $\xi \in L^*$ and F be a finitely generated submodule of L; we show that $(\xi + W(F)) \cap f^*(M^*) \neq 0$. Set $\eta = \xi|_F$: by theorem 2.5 of [D.O.1], η extends to a character η' of M and obviously $\eta' \xi \in W(F)$.
- 2.2 Remark. If F is finitely generated in $\mathfrak{D}(K_A)$, F^* is discrete since 0 = W(F) is a neighbourhood of 0 in F^* . If $\operatorname{Mod-}A = \mathfrak{D}(K_A)$, then it is true also the converse: let $M = N^*$ be discrete, there exists a finitely generated submodule F of N such that W(F) = 0. If $F \neq N$, and $x \in N F$, we would find, being K_A a cogenerator, a morphism φ with $\varphi(x) \neq 0$ and $\varphi|_{F} = 0$: absurd!
- 2.3 DUALITY LEMMA. Let $\alpha: N \to M$ and $f: L \to M$ morphisms in Mod-A; then Im $\alpha \leqslant \text{Im } f$ if and only if $\text{Ker } \alpha^* \geqslant \text{Ker } f^*$.

PROOF. (\Rightarrow) Let $\xi \in \text{Ker } (f^*)$, then $f^*(\xi) = 0$, i.e. $\xi \circ f = 0$ hence $\alpha^*(\xi) = \xi \circ \alpha = 0$ and consequently $\xi \in \text{Ker } \alpha^*$.

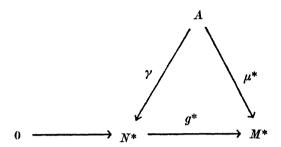
(\Leftarrow) Now we assume that for each $\xi \in M^*$, $f^*(\xi) = 0$ implies $\alpha^*(\xi) = 0$, i.e. Im $f \leqslant \operatorname{Ker} \xi$ implies Im $\alpha \leqslant \operatorname{Ker} \xi$; we claim that Im $\alpha \leqslant \operatorname{Im} f$: if $x \in \operatorname{Im} \alpha$ and $x \notin \operatorname{Im} f$, being K_A a cogenerator of Mod-A, there exists $\xi \in M^*$ such that $\xi(f(L)) = 0$ and $\xi(x) \neq 0$, so $f(L) \leqslant \operatorname{Ker} \xi$ and Im $\alpha \leqslant \operatorname{Ker} \xi$, absurd!

- 2.4 THEOREM. Let $L \xrightarrow{f} M \xrightarrow{g} N$ be a sequence in C(R) such that
 - a) f is a topological embedding,
 - b) Im f = Ker q,
 - c) $(g(M))^c = N;$

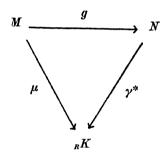
then the sequence $0 \to N^* \xrightarrow{g^*} M^* \xrightarrow{f^*} L^* \to 0$ is an exact sequence in Mod-A.

PROOF. Let $v \in \operatorname{Chom}_R(N, {}_RK)$ be such that $g^*(v) = v \circ g = 0$; since $\operatorname{Ker} v$ is closed in N, $N = (\operatorname{Im} g)^c \leqslant \operatorname{Ker} v$ and g^* is injective. If $\lambda \in L^*$, by a) and the E.P., there exists a character $\mu \colon M \to {}_RK$ such that $\mu \circ f = \lambda$; then $\lambda = f^*(\mu)$ and consequently f^* is surjective. Finally we have to prove $\operatorname{Im} g^* = \operatorname{Ker} f^*$: if $\mu \in \operatorname{Im} g^*$, then $\mu = g^*(v) = v \circ g$ with $v \in N^*$; it results $f^*(v \circ g) = (v \circ g) \circ f = v \circ (g \circ f) = 0$, hence $\mu \in \operatorname{Ker} f^*$. Let $\mu \in \operatorname{Ker} f^*$, $0 = f^*(\mu) = \mu \circ f$ hence $\operatorname{Im} f \leqslant \operatorname{Ker} \mu$ that implies $\operatorname{Ker} g \leqslant f^*$.

 \leq Ker μ . We consider in Mod-A the diagram with exact row



Being Ker $g \leqslant \text{Ker } \mu$, by Lemma 2.3 we have $\text{Im } \mu^* \leqslant \text{Im } g^*$ and hence there exists a unique morphism $\gamma \colon A \to N^*$ such that $\mu^* = g^* \circ \gamma$. We obtain the commutative diagram



with γ^* continuous morphism; then $\mu = \gamma^* \circ g = g^*(\gamma^*)$ and hence $\mu \in \operatorname{Im} g^*$.

- 2.5 DEFINITION. A module $M \in R$ -Mod is called weakly quasi-injective (in short w.q.i.) if for any $n \in \mathbb{N}$ and any finitely generated submodule H of M^n , each morphism of H in M extends to M^n .
- 2.6 We will denote by $(V_{\gamma})_{\gamma \in \Gamma}$ a system of representatives of the isomorphism classes of the simple τ -torsion left R_{τ} -modules, we set $\operatorname{End}(V_{\tau}) = D_{\tau}$ and $n_{\tau} = \dim_{D_{\tau}}(V_{\tau})$. Being V_{τ} a simple module, D_{τ} is a division ring and V_{τ} is a vector space over D_{τ} . We call isotypic component of $\operatorname{Soc}(_{R}K)$ relative to V_{τ} the sum of all simple submodule of $_{R}K$ that are isomorphic to V_{τ} ; it will be denoted by $\sum V_{\tau}$.

Let A be a ring and J(A) be its Jacobson radical, i.e. the intersection of all maximal left ideals of A.

- 2.7 Proposition. Let _RK be s.q.i. and $\mathfrak{D}(K_A) = \text{Mod-}A$; then
 - i) K_A is a cogenerator of Mod-A,
 - ii) A_A is l.c.d.,
 - iii) A/J(A) is semisimple artinian, hence Mod-A has only a finite number of non isomorphic simple modules,
 - iv) $Soc(K_A) = Soc(R)$ and they are both essential.

Proof. i) It is obvious.

- ii) K_A is a cogenerator of Mod-A, ${}_RK_A$ is faithfully balanced and, since ${}_RK$ is s.q.i., we conclude by Corollary 17.9 of [M.O.2].
- iii) Since A is l.c.d., then A/J(A) is semiprimitive and l.c.d., hence, by Theorem of Leptin [O. Th. 5.10], it is artinian semisimple.
- iv) K_A is a cogenerator of Mod-A, $_RK$ is s.q.i. hence it is a self-cogenerator; then K_A is w.q.i., and so Theorem 2.6 of [D.O.1] applies.
- 2.8 PROPOSITION. Let $_RK_A$ be faithfully balanced, $_RK$ s.q.i. and $\mathfrak{D}(K_A) = \text{Mod-}A$; then
 - i) for each $\gamma \in \Gamma_R K$ has a submodule that is isomorphic to V_{γ} ,
 - ii) V_{γ}^* is a simple module belonging to Mod-A, $V_{\gamma}^* \leqslant \operatorname{Soc}(K_A)$ and all the simple submodules of K_A are of this form,
 - iii) The modules V_{γ}^* , $\gamma \in \Gamma$ are a system of representatives of the isomorphism classes of the simple modules belonging to Mod-A.

Moreover Γ is finite.

PROOF. i) Let $0 \neq x \in V_{\nu}$; since ${}_{R}K$ is s.q.i. there exists $f: V_{\nu} \to {}_{R}K$ with $f(x) \neq 0$ and, being V_{ν} a simple module, f is an embedding.

- ii) and iii) $V_{\gamma}^* = \operatorname{Hom}_R(V_{\gamma}, {_R}K) \cong \operatorname{Hom}_R(R/\mathcal{M}, {_R}K) \cong \operatorname{Ann}_K(\mathcal{M})$ with \mathcal{M} maximal ideal of R; $\operatorname{Ann}_K(\mathcal{M})$ is a simple submodule of K_A and so V_{γ}^* is isomorphic to a submodule of $\operatorname{Soc}(K_A)$. Since K_A is a cogenerator of Mod-A, each simple module has this form, for the dual of a simple submodule of K_A is a simple R-module.
- 2.9 Let $S = \operatorname{Soc}(_RK)$ and $S = \bigoplus_{\lambda \in \Lambda} S_{\lambda}$ be a fixed decomposition of S as direct sum of simple modules. Consider the sequence $0 \to S \to RK \to RK/S \to 0$; since RK is q.i., each morphism from S into RK

extends to an endomorphism of _RK, then we have the exact sequence

$$0 \to \operatorname{Hom}_R({}_RK/S, {}_RK) \to \operatorname{End}({}_RK) \to \operatorname{Hom}_R(S, {}_RK) \to 0$$
.

Next it is $\operatorname{Hom}_R(S, {}_RK) \cong \operatorname{End}_R(S)$ and $\operatorname{Hom}_R({}_RK/S, {}_RK) \cong J(A)$, for $\operatorname{Hom}_R({}_RK/S, {}_RK)$ is isomorphic to the subgroup of $\operatorname{End}({}_RK)$ consisting of all f such that $f|_S = 0$, i.e. to the subgroup of all $a \in A$ such that $\operatorname{Soc}({}_RK) \cdot a = 0$; since $\operatorname{Soc}({}_RK) = \operatorname{Soc}(K_A)$, $\operatorname{Hom}_R({}_RK/S, {}_RK)$ is isomorphic to $\operatorname{Ann}_A(\operatorname{Soc}(K_A)) = \bigcap_{\lambda} \operatorname{Ann}_A(S_{\lambda}) = J(A)$. We have so the exact sequence $0 \to J(A) \to A \to \operatorname{End}_R(S) = A/J(A) \to 0$ and the following isomorphisms of right A-module

$$egin{aligned} A/J(A) &\cong \operatorname{Hom}_R(S, {}_RK) = \ &= \operatorname{Hom}_R\left(igoplus_{\lambda} S_{\lambda}, {}_RK
ight) \cong \prod_{\lambda} \operatorname{Hom}_R(S_{\lambda}, {}_RK) = \prod_{\lambda} S_{\lambda}^* \;. \end{aligned}$$

Since A/J(A) is l.c.d., $\prod_{\lambda} \operatorname{Hom}_{R}(S_{\lambda}, {}_{R}K)$ is l.c.d. and hence $\bigoplus_{\lambda} \operatorname{Hom}_{R}(S_{\lambda}, {}_{R}K)$ is l.c.d.; therefore Λ is finite and being $S = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{(\nu_{\gamma})} = \bigoplus_{\lambda} (V_{\gamma}^{*})^{(\nu_{\gamma})} = \bigoplus_{\lambda} S_{\lambda}^{*}$, Γ is finite and ν_{γ} is finite for all $\gamma \in \Gamma$.

2.10 THEOREM. Let $_RK$ be s.q.i. and $\operatorname{Mod-}A = \mathfrak{D}(K_A);$ then

$$_{\scriptscriptstyle R} K = \bigoplus_{\gamma \in \Gamma} E_{ au}(V_{\gamma})^{
u_{\gamma}},$$

 Γ is finite and v_{γ} are positive integer numbers. Moreover $|\Gamma|$ and the v_{γ} are uniquely determined.

PROOF. Owing to the above considerations we have $\operatorname{Soc}(_RK) = \bigoplus_{\gamma \in \Gamma} \sum V_{\gamma} = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{\nu_{\gamma}}$; since $\operatorname{Soc}(_RK)$ is essential in $_RK$ which is s.q.i.; it turns out that $_RK = E_{\tau}(\operatorname{Soc}(_RK)) = E_{\tau}(\bigoplus_{\gamma \in \Gamma} V_{\gamma}^{\nu_{\gamma}}) = \bigoplus_{\gamma \in \Gamma} E_{\tau}(V_{\gamma})^{\nu_{\gamma}}$, for Γ and ν_{τ} are finite.

3. Example.

3.1 In this part we give an example of a good duality Δ_K between $C(_RK)$ and Mod-A, where K_A is a cogenerator not injective of Mod-A.

Let $\mathbb{Z}(p^{\infty})$ be the *p*-primary component of \mathbb{Q}/\mathbb{Z} and J_{p} its endomorphisms ring. Let us consider the set $J_{p} \times \mathbb{Z}(p^{\infty})$; the positions (a, b) + (c, d) = (a + c, b + d) and (a, b)(c, d) = (ac, ad + bc) define a ring structure on $J_{p} \times \mathbb{Z}(p^{\infty})$; it will be called the *trivial extension* of $\mathbb{Z}(p^{\infty})$ by J_{p} and will be denoted by $J_{p} \times \mathbb{Z}(p^{\infty})$.

Let $A = J_p \ltimes \mathbb{Z}(p^{\infty})$, $K = \mathbb{Z}(p^{\infty})^{(N)}$ and $R = \operatorname{End}(K_A)$; we will prove that K_A is a non injective cogenerator of Mod-A and that ${}_RK$ is s.q.i., hence Δ_K is a good duality between Mod-A and $C({}_RK)$.

A is a local l.c.d. ring; $\mathbf{Z}(p^{\infty})$, being the injective hull of the unique simple A-module, is the minimal injective cogenerator of Mod-A. Obviously $\mathbf{Z}(p^{\infty})^{(N)}$ is a cogenerator of Mod-A and it is not injective: for, denoted by c_i $(i \in \mathbf{N})$ the system of generators of $\mathbf{Z}(p^{\infty})$ with $pc_1 = 0$ and $pc_i = c_{i-1}$, the morphism $\mathbf{Z}(p^{\infty}) \to K$ $c_i \to (c_i, c_{i-1}, ..., c_1, 0, ...)$ does not extend to a morphism of A in K.

By Corollary 22.8 of [M.O.2], set $R = \text{End } (K_A)$, the bimodule ${}_RK_A$ is faithfully balanced and ${}_RK$ is q.i. The ring R is isomorphic to the ring T_N of the matrices $N \times N$ with summable columns with entries in $\text{End } (\mathbf{Z}(p^{\infty})) = J_p$ endowed with the $\mathbf{Z}(p^{\infty})$ -topology. It is the ring of all matrices $(\alpha_{ij})_{i,j\in\mathbb{N}}$ with $a_{ij} \in J_p$ such that for each k, $n \in \mathbb{N}$ there exists $l \in \mathbb{N}$ with $\alpha_{jk} \in p^n J_p \ \forall j \geqslant l$. If R is endowed with the K-topology τ and T_N with the topology having the left ideals $W(F;I) = \{(\alpha_{ij})_{i,j\in\mathbb{N}}: (\alpha_{i\mu})_{i\in\mathbb{N}} \in I^\mathbb{N} \ \forall \mu \in F\}$, with I open left ideal of J_p (i.e. $I = p^n J_p$ for a suitable $n \in \mathbb{N}$) and F finite subset of \mathbb{N} , as a basis of neighbourhoods of 0, the isomorphism is also topological (see [D.O.2], Th. 4.4).

3.2 Proposition. The maximal open left ideal of $T_{\rm N}$ are precisely those of the form

$$I_{\mathcal{F},A} = \left\{ (lpha_{ij}) \in T_{\mathbf{N}} \colon 0 \ \equiv \sum_{r \in \mathcal{F}} \lambda_r \, lpha_{ir} \ (pJ_p) \ orall i \in \mathbb{N}
ight\},$$

where \mathcal{F} is a finite subset of \mathbb{N} , $\Lambda = \{\lambda_r \colon r \in \mathcal{F}\} \subseteq J_p$, and $\Lambda \not\subset pJ_p$.

PROOF. Obviously these are proper open left ideals, for $W(\mathcal{F}, pJ_{\mathfrak{p}}) \subseteq I_{\mathcal{F}, A}$. Let I be a maximal open left ideal of $T_{\mathbf{N}}$, then $I \supseteq pT_{\mathbf{N}}$: in fact suppose that $pT_{\mathbf{N}} \not\subseteq I$, then $I + pT_{\mathbf{N}} = T_{\mathbf{N}}$ hence

$$A = egin{bmatrix} 1 + pb_{11} & pb_{12} & \cdots \ pb_{21} & 1 + pb_{22} & \cdots \ \cdots & \cdots & \cdots \ \end{bmatrix}$$

belongs to I; now I is open, therefore it contains $W(F; p^n J_p)$; set $s = \max(F)$, then

$$B = \begin{bmatrix} 1 + pb_{11} & pb_{12} & \dots & pb_{1s} & 0 & & \\ pb_{21} & 1 + pb_{22} & \dots & pb_{2s} & 0 & & \\ \dots & \dots & \ddots & \dots & 0 & 0 & \\ pb_{s1} & pb_{s2} & \dots & 1 + pb_{ss} & 0 & & \\ \dots & \dots & \dots & \dots & 1 & & \\ & & & & & & \ddots & \end{bmatrix} \in I$$

for B = A + [B - A] where $A \in I$ and $[B - A] \in W(F; p^n J_p) \subseteq I$. Now $1 + pb_{ii}$ is a unit in J_p , hence

$$C = \begin{bmatrix} 1 & pa_{12} & \dots & pa_{1s} & 0 \\ pa_{21} & 1 & \dots & pa_{2s} & 0 \\ \dots & \dots & \ddots & \dots & 0 \\ pa_{s1} & pa_{s2} & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots & 1 \\ & & & & & \ddots \end{bmatrix} \in I$$

Now multiplying C on the left by

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ -pa_{21} & 1 & 0 & \dots & 0 & 0 \\ -pa_{31} & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \ddots & \dots & 0 \\ -pa_{s1} & 0 & 0 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots & \dots & 1 \end{bmatrix}$$

we find

Next 1- $p^2(...)$ is a unit in J_p , hence

$$\begin{bmatrix} 1 & pa'_{12} & \dots & pa'_{1s} & 0 \\ 0 & 1 & \dots & \dots & 0 \\ \dots & \dots & \ddots & \dots & 0 \\ 0 & \dots & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots & 1 \\ & & & & & 1 \\ & & & & & 0 \\ \end{bmatrix} \in I$$

and multiplying the last matrix by

$$\begin{bmatrix} 1 & -pa'_{12} & 0 & \dots & \dots & 0 \\ 0 & 1 & \dots & \dots & 0 \\ 0 & -pa'_{32} & \ddots & \dots & \dots & 0 \\ \dots & \dots & \ddots & \dots & 0 \\ 0 & \dots & 0 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots & \dots & 1 \\ & & & & & 0 & \ddots \end{bmatrix}$$

and repeating the above arguments we have

$$\begin{bmatrix} 1 & 0 & pa_{13}'' & \cdots & pa_{1s}'' \\ 0 & 1 & pa_{23}'' & & pa_{2s}'' \\ 0 & 0 & 1 & & \cdots & \\ & & pa_{43}'' & & \\ \cdots & & & & 1 \\ & & & & & 1 \\ & & & & & \ddots \\ & & & & & & 0 \end{bmatrix} \in I.$$

Carrying over the previous machinery finitely many times we reach the identity matrix belongs to I: absurd! Now let us consider the ring morphism $\varphi\colon T_{\mathbf{N}}\to T_{\mathbf{N}}/pT_{\mathbf{N}}$; there is a bijective correspondence between the ideals of $T_{\mathbf{N}}$ containing Ker $\varphi=pT_{\mathbf{N}}$ and the ideals of $T_{\mathbf{N}}/pT_{\mathbf{N}}$; moreover this correspondence respects the inclusion. $T_{\mathbf{N}}/pT_{\mathbf{N}}$ is isomorphic to the ring B of matrices with the entries in the field $D=J_{p}/pJ_{p}$ with infinitely many rows and columns where the elements of each column are almost all zero. Next B is isomorphic to the ring of endomorphisms of the vector space $V=D^{(\mathbf{N})}$; the maximal ideal of B are $I_{v}=\{(\alpha_{ij})\in B\colon (\alpha_{ij})v=0\}$ with $v\in V$ then all open maximal left ideals of $T_{\mathbf{N}}$, since they contain $pT_{\mathbf{N}}$, they are equal to $\varphi^{-1}(I_{v})=I_{\mathcal{F},A}$ where, set $v=(v_{i})_{i\in\mathbf{N}}$, $\mathcal{F}=\{i\in\mathbf{N}:v_{i}\neq0\}$ and $A=\{v_{i}\colon v_{i}\neq0\}$.

Now $T_{N}/I_{\mathcal{F},A}$ is isomorphic to the T_{N} -module of matrices

$$\begin{bmatrix} 0 & \cdots & 0 & l_{1k} & 0 & 000 \\ \vdots & & & & & \\ 0 & \cdots & 0 & l_{kk} & 0 & \cdots \\ \vdots & & & & & \end{bmatrix}$$

with $l_{ik} \in J_p/pJ_p \cong \mathbb{Z}(p)$ almost all zero, where the scalar multiplication is defined rows by columns. It is obvious that if \mathfrak{G} is another finite subset of \mathbb{N} and $M = \{\mu_r \colon r \in \mathfrak{F}\}$ is another subset of J_p , $T_{\mathbb{N}}/I_{\mathfrak{F},A} \cong T_{\mathbb{N}}/I_{\mathfrak{F},M}$ as $T_{\mathbb{N}}$ -modules. Being $T_{\mathbb{N}}/I_{\mathfrak{F},A} \cong \mathbb{Z}(p)^{(\mathbb{N})}$, we conclude that there is only one simple τ -torsion R-module and it is contained in $\mathbb{Z}(p^{\infty})^{(\mathbb{N})}$. Then $\mathbb{Z}(p^{\infty})^{(\mathbb{N})}$ is a s.q.i. R-module by theorem 6.7 of [M.O.1] and the example is made.

REFERENCES

- [D.O.1] D. DIKRANJAN A. ORSATTI, On the structure of linearly compact rings and their dualities, Rend. Accad. Naz. Sc. XL, Mem. Mat., 102 (1984), pp. 143-184.
- [D.O.2] D. DIKRANJAN A. ORSATTI, Sugli anelli linearmente compatti, Supplemento ai Rend. Circolo Matematico di Palermo, Serie II, n. 4 (1984).
- [M.1] C. Menini, Linearly compact rings and selfcogenerators, Rend. Sem. Mat. Univ. Padova, 72 (1984), pp. 99-116.
- [M.2] C. Menini, Linearly compact rings and strongly quasi-injective modules, Rend. Sem. Mat. Univ. Padova, 65 (1980), pp. 251-262. See also Errata Corrige Linearly compact ..., ibidem, 69 (1983), pp. 305-306.
- [M.O.1] C. Menini A. Orsatti, Good dualities and strongly quasi-injective modules, Ann. Mat. Pura Appl., (IV) 127 (1981), pp. 187-230.
- [M.O.2] C. Menini A. Orsatti, Dualities between categories of topological modules and their applications, unpublished.
- [O.] A. Orsatti, Anelli linearmente compatti e teoremi di Leptin, Boll. U.M.I., 6, 1-A (1982), pp. 331-357.
- [W.] S. WARNER, Linearly compact rings and modules, Math. Ann., 197 (1972), pp. 29-43.

Manoscritto pervenuto in redazione il 5 luglio 1988.