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Representable Equivalences between Categories
of Modules and Applications.

CLAUDIA MENINI - ADALBERTO ORSATTI (*)

Dedicato a Giovanni Zacher.

1. Introduction.

All rings considered in this paper have a nonzero identity and
all modules are unital. For every ring R, Mod-R (B-Mod) denotes
the category of all right (left) R-modules. The symbol (RM) is

used to emphasize that is a right (left) R-module.
Categories and functors are understood to be additive. Any sub-

category of a given category is full and closed under isomorphic
objects.

1.1. Let A and R be two rings, 0, and gB subcategories of Mod-A
and Mod-R respectively.

Assume that a category equivalence (F, G), F: DA --&#x3E;. 9,R and
G: · DA is given. We say that the equivalence (F, G) is repre-
sentable if there exists a bimodule with such that the

following natural equivalences of functors hold:

(*) Indirizzo degli A.A.: C. MENINI: Dipartimento di Matematica, via
Roma, 1-67100 L’Aquila; A. ORSATTI: Dipartimento di Matematica Pura e
Applicata, Università di Padova, via Belzoni 7, 1-35100 Padova.
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In this case we say that the bimodule APR induces the equivalence
(F, G). Note that, if AA E ÐA, then A is canonically isomorphic to
End (PR).

For example if I)A= Mod-A and 9,., = Mod-.R, then a classical
Morita’s result [M] asserts that (F, G) is representable by a faithful
balanced bimodule APR which is a progenerator on both sides and
conversely any such a bimodule induces an equivalence between
Mod-A and Mod-R.

1.2. More recently Fuller [F] proved the following result : if ÐA =
= Mod-A and if 9,, is closed under submodules, epimorphic images
and arbitrary direct sums, then (.F’, G) is representable by a bimodule
APR such that PR is a quasi-progenerator i.e. PR is quasi-projective,
finitely generated (f.g.) and generates all its submodules. Conversely
any quasi-progenerator PR with A = End (PR) induces such an equi-
valence. If PR is a progenerator then Gen (PR) = Gen (PR) and
is dense in End (AP) endowed with its finite topology. For unex-

plained terms see Section 2.

1.3. In this paper we prove the following representation theorem.
Assume that

a) AA E 5)A and ÐA is closed under submodules.

b ) 9,R is closed under arbitrary direct sums and epimorphic
images.

c) A category equivalence
given

and let QR be a fixed, but arbitrary, injective cogenerator of Mod-R.
Then there exists a bimodule AP9 with the following properties:

2) gR = Gen (P~), ~(.K~) where KA = Homt (PR, QR) and
9)(KA) is the subcategory of Mod-A cogenerated by 

3) The bimodule APR induces the equivalence (F, G).

1.4. The categories and 9, involved in 1.3 are the largest
possible. Indeed, given any bimodule APR and setting T = - 8&#x3E; P,

A

.H = HomR (P~, -) we have Im (T) C Gen (.PR) and Im (H) c 5)(KA-
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1.5. Under the assumptions a), b), c) in 1.3, suppose that, in addi-
tion, ~R is closed under submodules. Then we prove that 5)(K~,)

so that PR is a quasi-progenerator.
Thus we obtain, in this way, a non trivial generalization of Fuller’s

Theorem on equivalences.

1.6. Under the assumptions a), b), c) in 1.3 it holds, in general,
that Mod-A. This will be proved in Section 4 using tilting
modules of Happel and Ringel [HR2]. Nevertheless we are able to

give, in Section 5, a number of conditions in order that ÐA = Mod-A.
In particular this is true if PR is quasi-projective.

The following question is still open: characterize the modules

PR E Mod-R such that, setting A = End (PR), the bimodule APR in-
duces an equivalence between 5)(KA) and Gen (PR).

1.7. Using Pontryagin duality on .1~, Theorem in 1.3 can be trans-
lated in a representation theorem for a given duality between the
category ÐA in 1.3 and a category ~C of compact modules which is
assumed to be closed under topological products and closed submod-
ules.

This representation theorem leads us to solve and old question
of ours [MO] : there exist dualities between 9)A and ~C which are not
« good dualities ~.

Acknowledgements. The authors are deeply indebted to Prof. Ma-
sahisa Sato for pointing out to them that tilting modules provide
examples of ~(.K~) ~ Mod-A.

They are also grateful to Prof. G. D’Este and Dr. E. Gregorio
for many useful suggestions.

2. Preliminaries.

2.1. Let A and 1~ be two rings, APR any bimodule. Define the
functors T and g by setting
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Let Gen (Pn) be the full subcategory of Mod-R generated by Pn.
Recall that a module M E Mod-B belongs to Gen (Pn) if there exists
an epimorphism Pf’ - M -+ 0 where X is a suitable set. Gen (PR)
is closed under taking epimorphic images and arbitrary direct sums.

Denote by Gen (Pn) the smallest subcategory of Mod-R containing
Gen (PR) and closed under taking submodules, epimorphic images
and direct sums. Clearly Gen (PR) = Gen if and only if Gen (Pn)
is closed under submodules.

Let C(PR) be the subcategory of Mod-R consisting of all modules
Me having PR-codominant dimension ~ 2 i.e. for which there
is an exact sequence of the form

Clearly

Let QR be a fixed, but arbitrary, y injective cogenerator of Mod-R and
set KA = HomR (PR, QR). Denote by ~(gA) the full subcategory of
Mod-A cogenerated by KA and by the subcategory of Mod-A
consisting of all modules L E Mod-A having KA-dominant dimension
~ 2. This means that there exists an exact sequence

Clearly

Finally, y for every set

Then tp(M) E Gen (PR) and HomR (P, M) ~ HomR (P, canoni-

cally.

2.2. PROPOSITION. Let APR be any bimodule. T hen :

o) For every M E Mod-R, H(M)  canonically.
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PROOF. a) Let L E Mod-A. There is an exact sequence of the
form

Tensoring by AP we get the exact sequence

Hence T(L) E C(P,).

b ) Let ME Mod-.R. There exists an exact sequence

Applying .H we get the exact sequence

so that H(M) E L(K~).

c) is obvious.

2.3. Let APR be any bimodule. Recall that for every M E Mod-R
there exists a natural morphism in Mold-R

given by 
It is also well known that, for every L e Mod-.A there is a natural

morphism in Mod-A

given by

The following remarks are useful:

a) For every ME Gen (PB), ~OM is surjective..
b) For every L E (JL is injective.
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Statement a) is obvious. Let us prove b ) . Let Then

there exists an inclusion L 4- HomR (PR, Thus for every I E L,
10 0, there exists a $ E Hom, (L, HomR (PR, QR)) such that ~(t) ~ 0.
Hence there is a p E P such that ~( ~) ( p ) ~ 0. Let $ : 

_ 

A

be the morphism defined by setting ~(x 0 y) == ~(x)(y), x E L, y E P,
Then ~(1 (D p) = ~(t)(p) # 0 and thus p 0 0 so that Ker (J~).
Hence Ker ( aL ) = 0 .

2.4. PROPOSITION. Let ,APR be a bimodule which induces an equiv-
alence between a subcategory ~A o f Mod-A and a subcategory gR of
Mod-P. Then, if A E ÐA, I for every M E 9,, and for every L E DA the
morphisms em and (JL are isomophisms.

PROOF. Then, by Proposition 2.2, ME Gen (PR) and
hence, by 2.3, ~M is surjective. Set N~ = HomR (PR, M).

By assumption there is an isomorphism

Let 6: N~ --~ HOMR (PR, MR) be the morphism corresponding to e
because of the adjointness of T and H. Then for every f E N =
= HomR ( PR , MB) and for every p E P :

Let h E Hom, (Mn, such that 0 = HomR (Pn, h).
Then, for every f E N,

and hence, for every p E P,

From (1) and (2) we get

for every f E N, p E P.
Thus e = hoem. Then eM is injective as o is injective.
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Let now Ze 5)A. Then, by Proposition 2.2y Ze O(KA) and hence

by 2.3, c~L is injective. Let ~ E Hom, (P, Z0 P) = Hom~ (T(A), T(L)) .’ 
A 

’

Then there is an L) such that ~ = T( f ). Let x - f (1 ).
Then, for every pEP we have

Thus = ~ and is surjective.

2.5. DEFINITION. A module AP E Mod-A is called weak generator
if, for every 

2.6. LEMMA. Let M E Gen (PR), h : P‘R ’ --~ M be an epimorphism.
Let h = with hz E HomR (PR, M). Then the right A-submodule
I of HomR ( PR , M) belongs to Moreover if
xEX

then for every f : P R -+ M there exists a g E HomR (PR, PR ~) such that
f - hog.

PROOF. The first assertion follows by Proposition 2.2. Assume
now that HomR (PR , M) and let f : M be an R-mor-

phism. Then j i where a., E ~L and almost all az’s vanish. Let

be the diagonal morphism of the aae’s, x E X. Then for

every p e P we have Thus f = hog.

2.7. DEFINITIONS. Let A = End (PR). PR is called

quasi-projective if, for every diagram

with exact row, there exists an a E A such that f = ho ac.
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P~ is called Z-qua8i-projective if P~’ is quasi-projective for every
set 0. Clearly PR is Z-quasi-projective if and only if Pz is a

projective object of Gen (PR).

2.8. LEMMA. Let

h = an epimorphism of onto M and assume that is injec-
tive. Then:

a) The morphisms given

by the inclusion is surjective.

b) I f AP i8 a weak generator, then

PROOF. See [A], Lemma 1 and Proposition 5.

2.9. LEMMA. Let PR E Mod-R, A = End (PR). If the f unctors
T = - Ox P and H = Hom (PR, - ) subordinate an equivalence be

A 
_

tween and Gen (PR) and i f Gen (PR) = Gen (PR), then:

a) For every M E Gen (PR) and for every epimorphism

we have

b) PR is 

PROOF. Since (T, g) is an equivalence between 5)(KA) and Gen (PR),
by Proposition 2.4 for every and for every L E 0(-KA),
~OM and or., are isomorphisms. Moreover, to prove a), it is enough to
prove that the morphism

defined in Lemma 2.8 is an isomorphism. Now, as eM is injective,
by Lemma 2.8, g~ is surjective.
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Assume that w is not injective. Set and consider the

inclusion i : M). Applying we get the exact

sequence in Mod-R

where T(i) = 99 and Y # 0. Since Gen (PR) = Gen (PR), Y E Gen (PR).
Applying g to (1) and setting M = H(M) we have the exact sequence

On the other hand we have the commutative diagram

Since L E arL and are both isomorphisms. It follows that
is injective so that, from (2), we get H~( Y) = 0. Thus Y = 0

as Y E Gen (Pn). Contradiction.

b ) By a) and Lemma 2.6, it follows that for every diagram
with exact row

there is a g: PR such that f = hog.
This means that PR is E-quasi-injective.

3. The main result.

3.1. REPRESENTATION THEOREM. Let A, R be two rings, gR
full subcategories of Mod-A and Mod-R respectively, QR a f ixed, but

arbitrary, injective cogenerator of Mod-R.



212

Assume that

a) AA E ÐA and ÐA is closed under taking submodules.

b) is closed under taking direct sums and epimorphic images

c) A category equivalence F: 5)A ~ ~R , G: --~ ~A is given with
F, G additive functors.

Then there exists a bimodule APR, I unique up to isomorphisms, with the
following properties :

1 ) PR E 9,,, A ~ End (PR) canonically.

2) D(KA), where KA = HomR (PR, QR) and = Gen (PR)

3) The f unctors F and G are naturally equivalent to the f unctors
T = - Q P and H = HomR (PR, - ) respectively.

A

4) For every L E O(KA) and for every M E Gen (PR) the canonical
morphisms (JL and eM are isomorphisms

PROOF. Set P, = F(A). Then End (PR) canonically and we
have the bimodule APR, For every M E Gen (PR) consider the can-
onical isomorphisms

(A, (F(A), (PR, M).

Thus, looking at the closure properties of 19.,,, we deduce that

i) G is naturally equivactent to the functor H = HomR (PR, - ~
and 

Consider now the functor T: 5)A given by T(L) = L @ P
A

for every T is well defined by i) and by Proposition 2.2.
By well known facts, the functors T and jF are adjoints. Since

(F, H) is an equivalence, .Z’ and H are adjoints. Therefore F and T
are equivalent. Thus

ii) .F is naturally equivalent to the functor
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Moreover, y by i) and by Proposition 2.2 we get

Set KA = Hom, (P , QR ) . Then:

The proof is due to E. Gregorio. First of all let us prove that

~A is closed under taking direct products. Let be a family
of modules in For every we have L). = where

Gen (PR). Now in Mod-R we have the following natural iso-

morphisms :

Since and by a), it follows

For similar reasons we have E ÐA. Indeed:

Therefore 9)(K,) C 0, by the closure properties of Ð A. On the
other hand, by a) and by Proposition 2.2, 9)(K,). Statement 4)
follows from Proposition 2.4 in view of a) and 3). Finally, y since

A ~ End (PR) we have A ~ so that T(A) canonically.
Thus PR is unique up to isomorphisms.

From Theorem 3.1 we get the following important

3.2. PROPOSITION. Suppose that the assumptions a), b), c) of The-
orem 3.1 hold. Then the following conditions are equivalent :

(a) 9,,,, is closed under taking submodules.

(b) Gen (PR) = Gen (PR).
(c) 5)(KA) - Mod-A.

(d) AP is a weak-generator.
(e) For every ME Gen (PR) and for every epimorphism

(f) .PR is E-quasi-projective.
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PROOF. (a) « (b) is obvious in view of Theorem 3.1.

(b) ~ ( f ) by Theorem 3.1 and Lemma 2.9.

( f ) ~ (b) Let ~VI E Gen (PR), U a submodule of if and consider
the exact sequence

As PR is E-quasi-projective, it is a projective object of Gen (PR) so
that we get the exact sequence

Consider now the commutative diagram with exact rows

em and e, are isomorphisms so that eu is surjective. Since Im (T) 9
ç Gen (PR) we get U E Gen (PR). Therefore Gen (PR) = Gen (PR).

(c) =&#x3E; (d) is clear in view of Theorem 3.1.

(d) =&#x3E;(e) let M E Gen (PR). By Theorem 3.1 (!M is an isomor-

phism. Thus (e) follows from Lemma 2.8.

(e) =&#x3E; ( f ) by Lemma 2.6.

( f ) =&#x3E; (c) Let L E Mod-A. We have an exact sequence

Tensoring (1) by AP we get the exact sequence

As PR is E-quasi-projective applying HomR (PR, -) to (2) we get
the exact sequence
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Consider now the commutative diagram

Since GÁ(X) and are both isomorphisms, cL is an isomorphism
too. Since Im (H) ç 5)(K,), we have Thus

3.3. REMARK. The proposition above gives a non trivial generali-
zation of Fuller’s Theorem on equivalence (cf. [F], Theorem 1.1).

3.4. PROPOSITION. Let APR be a bimodule which induces an equiv-
alence between D(KA) and Gen (PR) and let be ac family of

in Gen (PR). Then

1) HOMR canonically.

In particular

3) For every set X ~ 0, HomR

PROOF. 1 ) There exist the canonical isomorphisms:

2) and 3) are now obvious.

3.5. Theorem 1.3 suggests the following natural question:

(*) For a given ring R determine all modules .PR E Mod-R such that,
setting A = End the bimodule APR induces an equivalence
between 5)(KA) and Gen (PR) .

Suppose that APR is such a bimodule. Then the functors
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and H = HomR (PR, -) subordinate an equivalence between Im (H)
and Im (T) and moreover, in view of Proposition 2.2, the subcate-
gories Im (H) ~ Mod-A and Im (T) C Mod-R are the largest possible.
To answer question (*) without further assumptions seems to be

quite difficult.
Let APR be a bimodule, QR an injective cogenerator of Mod-R,

.gA = Hom~ (PR, QR) and the functors T, H have the usual meaning,
M. Sato ([S], Theorem 1.3) has shown that the bimodule APR induces
an equivalence between Im (H) and Im (T) if and only if Im (H) =
== .L(.KA), Im (T) = C(PR) and moreover APR induces an equivalence
between L(gA) and C(PR) (see also the proof of Theorem 1.3 of [S]).

In this situation it could happen that C(PR) = Gen (PR) while

L(-KA) 0 Ð(KA) as the following example shows.

3.6. AN EXAMPLE. Let p be a prime number, Z(pOO) the Priifer
group relative to p, ~Tp the ring of p-adic integers and consider the
bimodule JpZ(pOO)Jp’ Note that End J,.

In this case - Gen (Z(p°°)) - the category of all di-

visible p-primary abelian groups.
On the other hand, since Z(p°°) is an injective cogenerator of

Mod-Jp, we have

Ð(Jp) is the category of all reduced torsion-free J-modules, y while

is the category of all cotorsion and torsion-free Jp-mod1Ùes,
which are exactly all the direct summands of direct products of

copies of Jp .
By well known results of Harrison [H], the functors T = - 

Jp
and H = HomJp (Z(pOO), -) subordinate a category equivalence be-
tween

Thus, in this case, 
There exists a condition in order that a bimodule P.,, induces an

equivalence between and Gen (PR) which involves the whole
categories Mod-A and 
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3.7. PROPOSITION. Let APR be a bimodule with A = End (PR). Then
the following conditions are equivalent:

(ac) APR induces an equivalence between ~(.KA) and Gen (PR).
(b) For every .L E Mod-A the canonical morphism (JL is surjec-

tive and for every M E Mod-R the canonical morphism em is
injective.

PROOF. (a) ~ (b) Let ME Mod-.R and let i : M be the
canonical inclusion. Then H(i): H(tp(M)) -* H(M) is an isomorphism
and hence TH(M) is an isomorphism too.

Consider the commutative diagram:

As E Gen (PR), by Theorem 3.1, (!tp(M) is an isomorphism. Thus

em is injective.
Let now .L E Mod-A and consider the exact sequence

As Ker I for every ,, the map

is an isomorphism hence

is an isomorphism too.
Now L/Ker embedds into HomR (P, L @ P) and hence belongs

A

to 5)(K,). Thus is an isomorphism so that from the com-
mutative diagram

we get that aL is surjective.
(b) =&#x3E; (a ) follows in view of a) and b ) of 2.3.
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4. w-tilting modules.

4.1. In this section we will prove that under the assumptions a)‘
b), c) of Theorem 3.1 it holds, in general, that ~(Kd) ~ Mod-A.

4.2. Let 1~ be a ring. Generalizing the concept of tilting module
in the sense of Happel and Ringel [HR.] we say that a right R-
module PR is a w-tilting module if the following conditions hold :

1 ) PR is finitely presented.

2) PR has projective dimension ~ 1.

3) EgtR (P, P) = 0.

4) There exists an exact sequence in Mod-R of the form

where P’ and P" are direct sums of direct summands of PR .
Note that when I~ is a finite dimensional algebra over a field K

any tilting module in the sense of Happel and Ringel is a w-tilting
module.

The following theorem is modelled on Brenner-Butler Theorem on
tilting modules (see [HR]) . As in their setting all modules are finitely
generated, we shall give the proof for our more general case.

4.3. THEOREM. Let PR be a w-tilting module, A = End (PR) and
= IL E Mod-A : Tor’ (LA, = 01. Then

b) A E Ð A and Ð A is closed under submodules.

c) For every ME Gen (PR), HomR E 9)A and the f unctors
H: Gen, (PR) - ÐA, T : ÐA --* Gen (PR) given by H(M) = HomR (PR, M)
and T(L) = L @ P, for every ME Gen ( PR ) and L E ÐA, acre acn equiv-

A

alence between Gen (PR) and ÐA. There f ore if QR is an arbitrary cogen-
erator of Mod-.R, then, by setting KA = HomR (PR, QR), we have ÐA =
= ~(gA)·
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PROOF. First of all we show that for every set ~, Ext£ (P, = 0.

As .PR is finitely presented we have an exact sequence in of
the form

where n E N and FR is a finitely generated right R-module.
Applying HomR (-, P) we get the exact sequence

hence every morphism ~ 2013~ PR can be extended to a morphism
Rn - P. Consider now a morphism f : .F -~ P~g’. As 14’ is finitely
generated, f is a diagonal morphism of a finite family of morphisms
from .P into P and hence f extends to a morphism from 1~~ into 
Thus the sequence

is exact. Thus, I as Ext~ (Rn, = 0 we get Ext1 (P, = 0. Now

let Gen (PR). Then there exists an exact sequence

Applying Ext’ (P, - ) we get the exact sequence

As EgtR (PR, M’) = 0 we get Ext, 1 (P, M) = 0.
Conversely assume that Ext.’ (P, .~) = 0 and consider the exact

sequence

Applying we get the exact sequence


