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Representable Equivalences between Categories
of Modules and Applications.

CLAUDIA MENINI - ADALBERTO ORSATTI (*)

Dedicato a Giovanni Zacher.

1. Introduction.

All rings considered in this paper have a nonzero identity and
all modules are unital. For every ring R, Mod-R (B-Mod) denotes
the category of all right (left) R-modules. The symbol (RM) is

used to emphasize that is a right (left) R-module.
Categories and functors are understood to be additive. Any sub-

category of a given category is full and closed under isomorphic
objects.

1.1. Let A and R be two rings, 0, and gB subcategories of Mod-A
and Mod-R respectively.

Assume that a category equivalence (F, G), F: DA --&#x3E;. 9,R and
G: · DA is given. We say that the equivalence (F, G) is repre-
sentable if there exists a bimodule with such that the

following natural equivalences of functors hold:

(*) Indirizzo degli A.A.: C. MENINI: Dipartimento di Matematica, via
Roma, 1-67100 L’Aquila; A. ORSATTI: Dipartimento di Matematica Pura e
Applicata, Università di Padova, via Belzoni 7, 1-35100 Padova.

This paper was written while the Authors were members of the G.N.S.
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support from Ministero della Pubblica Istruzione.
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In this case we say that the bimodule APR induces the equivalence
(F, G). Note that, if AA E ÐA, then A is canonically isomorphic to
End (PR).

For example if I)A= Mod-A and 9,., = Mod-.R, then a classical
Morita’s result [M] asserts that (F, G) is representable by a faithful
balanced bimodule APR which is a progenerator on both sides and
conversely any such a bimodule induces an equivalence between
Mod-A and Mod-R.

1.2. More recently Fuller [F] proved the following result : if ÐA =
= Mod-A and if 9,, is closed under submodules, epimorphic images
and arbitrary direct sums, then (.F’, G) is representable by a bimodule
APR such that PR is a quasi-progenerator i.e. PR is quasi-projective,
finitely generated (f.g.) and generates all its submodules. Conversely
any quasi-progenerator PR with A = End (PR) induces such an equi-
valence. If PR is a progenerator then Gen (PR) = Gen (PR) and
is dense in End (AP) endowed with its finite topology. For unex-

plained terms see Section 2.

1.3. In this paper we prove the following representation theorem.
Assume that

a) AA E 5)A and ÐA is closed under submodules.

b ) 9,R is closed under arbitrary direct sums and epimorphic
images.

c) A category equivalence
given

and let QR be a fixed, but arbitrary, injective cogenerator of Mod-R.
Then there exists a bimodule AP9 with the following properties:

2) gR = Gen (P~), ~(.K~) where KA = Homt (PR, QR) and
9)(KA) is the subcategory of Mod-A cogenerated by 

3) The bimodule APR induces the equivalence (F, G).

1.4. The categories and 9, involved in 1.3 are the largest
possible. Indeed, given any bimodule APR and setting T = - 8&#x3E; P,

A

.H = HomR (P~, -) we have Im (T) C Gen (.PR) and Im (H) c 5)(KA-
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1.5. Under the assumptions a), b), c) in 1.3, suppose that, in addi-
tion, ~R is closed under submodules. Then we prove that 5)(K~,)

so that PR is a quasi-progenerator.
Thus we obtain, in this way, a non trivial generalization of Fuller’s

Theorem on equivalences.

1.6. Under the assumptions a), b), c) in 1.3 it holds, in general,
that Mod-A. This will be proved in Section 4 using tilting
modules of Happel and Ringel [HR2]. Nevertheless we are able to

give, in Section 5, a number of conditions in order that ÐA = Mod-A.
In particular this is true if PR is quasi-projective.

The following question is still open: characterize the modules

PR E Mod-R such that, setting A = End (PR), the bimodule APR in-
duces an equivalence between 5)(KA) and Gen (PR).

1.7. Using Pontryagin duality on .1~, Theorem in 1.3 can be trans-
lated in a representation theorem for a given duality between the
category ÐA in 1.3 and a category ~C of compact modules which is
assumed to be closed under topological products and closed submod-
ules.

This representation theorem leads us to solve and old question
of ours [MO] : there exist dualities between 9)A and ~C which are not
« good dualities ~.

Acknowledgements. The authors are deeply indebted to Prof. Ma-
sahisa Sato for pointing out to them that tilting modules provide
examples of ~(.K~) ~ Mod-A.

They are also grateful to Prof. G. D’Este and Dr. E. Gregorio
for many useful suggestions.

2. Preliminaries.

2.1. Let A and 1~ be two rings, APR any bimodule. Define the
functors T and g by setting
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Let Gen (Pn) be the full subcategory of Mod-R generated by Pn.
Recall that a module M E Mod-B belongs to Gen (Pn) if there exists
an epimorphism Pf’ - M -+ 0 where X is a suitable set. Gen (PR)
is closed under taking epimorphic images and arbitrary direct sums.

Denote by Gen (Pn) the smallest subcategory of Mod-R containing
Gen (PR) and closed under taking submodules, epimorphic images
and direct sums. Clearly Gen (PR) = Gen if and only if Gen (Pn)
is closed under submodules.

Let C(PR) be the subcategory of Mod-R consisting of all modules
Me having PR-codominant dimension ~ 2 i.e. for which there
is an exact sequence of the form

Clearly

Let QR be a fixed, but arbitrary, y injective cogenerator of Mod-R and
set KA = HomR (PR, QR). Denote by ~(gA) the full subcategory of
Mod-A cogenerated by KA and by the subcategory of Mod-A
consisting of all modules L E Mod-A having KA-dominant dimension
~ 2. This means that there exists an exact sequence

Clearly

Finally, y for every set

Then tp(M) E Gen (PR) and HomR (P, M) ~ HomR (P, canoni-

cally.

2.2. PROPOSITION. Let APR be any bimodule. T hen :

o) For every M E Mod-R, H(M)  canonically.
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PROOF. a) Let L E Mod-A. There is an exact sequence of the
form

Tensoring by AP we get the exact sequence

Hence T(L) E C(P,).

b ) Let ME Mod-.R. There exists an exact sequence

Applying .H we get the exact sequence

so that H(M) E L(K~).

c) is obvious.

2.3. Let APR be any bimodule. Recall that for every M E Mod-R
there exists a natural morphism in Mold-R

given by 
It is also well known that, for every L e Mod-.A there is a natural

morphism in Mod-A

given by

The following remarks are useful:

a) For every ME Gen (PB), ~OM is surjective..
b) For every L E (JL is injective.
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Statement a) is obvious. Let us prove b ) . Let Then

there exists an inclusion L 4- HomR (PR, Thus for every I E L,
10 0, there exists a $ E Hom, (L, HomR (PR, QR)) such that ~(t) ~ 0.
Hence there is a p E P such that ~( ~) ( p ) ~ 0. Let $ : 

_ 

A

be the morphism defined by setting ~(x 0 y) == ~(x)(y), x E L, y E P,
Then ~(1 (D p) = ~(t)(p) # 0 and thus p 0 0 so that Ker (J~).
Hence Ker ( aL ) = 0 .

2.4. PROPOSITION. Let ,APR be a bimodule which induces an equiv-
alence between a subcategory ~A o f Mod-A and a subcategory gR of
Mod-P. Then, if A E ÐA, I for every M E 9,, and for every L E DA the
morphisms em and (JL are isomophisms.

PROOF. Then, by Proposition 2.2, ME Gen (PR) and
hence, by 2.3, ~M is surjective. Set N~ = HomR (PR, M).

By assumption there is an isomorphism

Let 6: N~ --~ HOMR (PR, MR) be the morphism corresponding to e
because of the adjointness of T and H. Then for every f E N =
= HomR ( PR , MB) and for every p E P :

Let h E Hom, (Mn, such that 0 = HomR (Pn, h).
Then, for every f E N,

and hence, for every p E P,

From (1) and (2) we get

for every f E N, p E P.
Thus e = hoem. Then eM is injective as o is injective.
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Let now Ze 5)A. Then, by Proposition 2.2y Ze O(KA) and hence

by 2.3, c~L is injective. Let ~ E Hom, (P, Z0 P) = Hom~ (T(A), T(L)) .’ 
A 

’

Then there is an L) such that ~ = T( f ). Let x - f (1 ).
Then, for every pEP we have

Thus = ~ and is surjective.

2.5. DEFINITION. A module AP E Mod-A is called weak generator
if, for every 

2.6. LEMMA. Let M E Gen (PR), h : P‘R ’ --~ M be an epimorphism.
Let h = with hz E HomR (PR, M). Then the right A-submodule
I of HomR ( PR , M) belongs to Moreover if
xEX

then for every f : P R -+ M there exists a g E HomR (PR, PR ~) such that
f - hog.

PROOF. The first assertion follows by Proposition 2.2. Assume
now that HomR (PR , M) and let f : M be an R-mor-

phism. Then j i where a., E ~L and almost all az’s vanish. Let

be the diagonal morphism of the aae’s, x E X. Then for

every p e P we have Thus f = hog.

2.7. DEFINITIONS. Let A = End (PR). PR is called

quasi-projective if, for every diagram

with exact row, there exists an a E A such that f = ho ac.
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P~ is called Z-qua8i-projective if P~’ is quasi-projective for every
set 0. Clearly PR is Z-quasi-projective if and only if Pz is a

projective object of Gen (PR).

2.8. LEMMA. Let

h = an epimorphism of onto M and assume that is injec-
tive. Then:

a) The morphisms given

by the inclusion is surjective.

b) I f AP i8 a weak generator, then

PROOF. See [A], Lemma 1 and Proposition 5.

2.9. LEMMA. Let PR E Mod-R, A = End (PR). If the f unctors
T = - Ox P and H = Hom (PR, - ) subordinate an equivalence be

A 
_

tween and Gen (PR) and i f Gen (PR) = Gen (PR), then:

a) For every M E Gen (PR) and for every epimorphism

we have

b) PR is 

PROOF. Since (T, g) is an equivalence between 5)(KA) and Gen (PR),
by Proposition 2.4 for every and for every L E 0(-KA),
~OM and or., are isomorphisms. Moreover, to prove a), it is enough to
prove that the morphism

defined in Lemma 2.8 is an isomorphism. Now, as eM is injective,
by Lemma 2.8, g~ is surjective.
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Assume that w is not injective. Set and consider the

inclusion i : M). Applying we get the exact

sequence in Mod-R

where T(i) = 99 and Y # 0. Since Gen (PR) = Gen (PR), Y E Gen (PR).
Applying g to (1) and setting M = H(M) we have the exact sequence

On the other hand we have the commutative diagram

Since L E arL and are both isomorphisms. It follows that
is injective so that, from (2), we get H~( Y) = 0. Thus Y = 0

as Y E Gen (Pn). Contradiction.

b ) By a) and Lemma 2.6, it follows that for every diagram
with exact row

there is a g: PR such that f = hog.
This means that PR is E-quasi-injective.

3. The main result.

3.1. REPRESENTATION THEOREM. Let A, R be two rings, gR
full subcategories of Mod-A and Mod-R respectively, QR a f ixed, but

arbitrary, injective cogenerator of Mod-R.
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Assume that

a) AA E ÐA and ÐA is closed under taking submodules.

b) is closed under taking direct sums and epimorphic images

c) A category equivalence F: 5)A ~ ~R , G: --~ ~A is given with
F, G additive functors.

Then there exists a bimodule APR, I unique up to isomorphisms, with the
following properties :

1 ) PR E 9,,, A ~ End (PR) canonically.

2) D(KA), where KA = HomR (PR, QR) and = Gen (PR)

3) The f unctors F and G are naturally equivalent to the f unctors
T = - Q P and H = HomR (PR, - ) respectively.

A

4) For every L E O(KA) and for every M E Gen (PR) the canonical
morphisms (JL and eM are isomorphisms

PROOF. Set P, = F(A). Then End (PR) canonically and we
have the bimodule APR, For every M E Gen (PR) consider the can-
onical isomorphisms

(A, (F(A), (PR, M).

Thus, looking at the closure properties of 19.,,, we deduce that

i) G is naturally equivactent to the functor H = HomR (PR, - ~
and 

Consider now the functor T: 5)A given by T(L) = L @ P
A

for every T is well defined by i) and by Proposition 2.2.
By well known facts, the functors T and jF are adjoints. Since

(F, H) is an equivalence, .Z’ and H are adjoints. Therefore F and T
are equivalent. Thus

ii) .F is naturally equivalent to the functor
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Moreover, y by i) and by Proposition 2.2 we get

Set KA = Hom, (P , QR ) . Then:

The proof is due to E. Gregorio. First of all let us prove that

~A is closed under taking direct products. Let be a family
of modules in For every we have L). = where

Gen (PR). Now in Mod-R we have the following natural iso-

morphisms :

Since and by a), it follows

For similar reasons we have E ÐA. Indeed:

Therefore 9)(K,) C 0, by the closure properties of Ð A. On the
other hand, by a) and by Proposition 2.2, 9)(K,). Statement 4)
follows from Proposition 2.4 in view of a) and 3). Finally, y since

A ~ End (PR) we have A ~ so that T(A) canonically.
Thus PR is unique up to isomorphisms.

From Theorem 3.1 we get the following important

3.2. PROPOSITION. Suppose that the assumptions a), b), c) of The-
orem 3.1 hold. Then the following conditions are equivalent :

(a) 9,,,, is closed under taking submodules.

(b) Gen (PR) = Gen (PR).
(c) 5)(KA) - Mod-A.

(d) AP is a weak-generator.
(e) For every ME Gen (PR) and for every epimorphism

(f) .PR is E-quasi-projective.



214

PROOF. (a) « (b) is obvious in view of Theorem 3.1.

(b) ~ ( f ) by Theorem 3.1 and Lemma 2.9.

( f ) ~ (b) Let ~VI E Gen (PR), U a submodule of if and consider
the exact sequence

As PR is E-quasi-projective, it is a projective object of Gen (PR) so
that we get the exact sequence

Consider now the commutative diagram with exact rows

em and e, are isomorphisms so that eu is surjective. Since Im (T) 9
ç Gen (PR) we get U E Gen (PR). Therefore Gen (PR) = Gen (PR).

(c) =&#x3E; (d) is clear in view of Theorem 3.1.

(d) =&#x3E;(e) let M E Gen (PR). By Theorem 3.1 (!M is an isomor-

phism. Thus (e) follows from Lemma 2.8.

(e) =&#x3E; ( f ) by Lemma 2.6.

( f ) =&#x3E; (c) Let L E Mod-A. We have an exact sequence

Tensoring (1) by AP we get the exact sequence

As PR is E-quasi-projective applying HomR (PR, -) to (2) we get
the exact sequence
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Consider now the commutative diagram

Since GÁ(X) and are both isomorphisms, cL is an isomorphism
too. Since Im (H) ç 5)(K,), we have Thus

3.3. REMARK. The proposition above gives a non trivial generali-
zation of Fuller’s Theorem on equivalence (cf. [F], Theorem 1.1).

3.4. PROPOSITION. Let APR be a bimodule which induces an equiv-
alence between D(KA) and Gen (PR) and let be ac family of

in Gen (PR). Then

1) HOMR canonically.

In particular

3) For every set X ~ 0, HomR

PROOF. 1 ) There exist the canonical isomorphisms:

2) and 3) are now obvious.

3.5. Theorem 1.3 suggests the following natural question:

(*) For a given ring R determine all modules .PR E Mod-R such that,
setting A = End the bimodule APR induces an equivalence
between 5)(KA) and Gen (PR) .

Suppose that APR is such a bimodule. Then the functors
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and H = HomR (PR, -) subordinate an equivalence between Im (H)
and Im (T) and moreover, in view of Proposition 2.2, the subcate-
gories Im (H) ~ Mod-A and Im (T) C Mod-R are the largest possible.
To answer question (*) without further assumptions seems to be

quite difficult.
Let APR be a bimodule, QR an injective cogenerator of Mod-R,

.gA = Hom~ (PR, QR) and the functors T, H have the usual meaning,
M. Sato ([S], Theorem 1.3) has shown that the bimodule APR induces
an equivalence between Im (H) and Im (T) if and only if Im (H) =
== .L(.KA), Im (T) = C(PR) and moreover APR induces an equivalence
between L(gA) and C(PR) (see also the proof of Theorem 1.3 of [S]).

In this situation it could happen that C(PR) = Gen (PR) while

L(-KA) 0 Ð(KA) as the following example shows.

3.6. AN EXAMPLE. Let p be a prime number, Z(pOO) the Priifer
group relative to p, ~Tp the ring of p-adic integers and consider the
bimodule JpZ(pOO)Jp’ Note that End J,.

In this case - Gen (Z(p°°)) - the category of all di-

visible p-primary abelian groups.
On the other hand, since Z(p°°) is an injective cogenerator of

Mod-Jp, we have

Ð(Jp) is the category of all reduced torsion-free J-modules, y while

is the category of all cotorsion and torsion-free Jp-mod1Ùes,
which are exactly all the direct summands of direct products of

copies of Jp .
By well known results of Harrison [H], the functors T = - 

Jp
and H = HomJp (Z(pOO), -) subordinate a category equivalence be-
tween

Thus, in this case, 
There exists a condition in order that a bimodule P.,, induces an

equivalence between and Gen (PR) which involves the whole
categories Mod-A and 
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3.7. PROPOSITION. Let APR be a bimodule with A = End (PR). Then
the following conditions are equivalent:

(ac) APR induces an equivalence between ~(.KA) and Gen (PR).
(b) For every .L E Mod-A the canonical morphism (JL is surjec-

tive and for every M E Mod-R the canonical morphism em is
injective.

PROOF. (a) ~ (b) Let ME Mod-.R and let i : M be the
canonical inclusion. Then H(i): H(tp(M)) -* H(M) is an isomorphism
and hence TH(M) is an isomorphism too.

Consider the commutative diagram:

As E Gen (PR), by Theorem 3.1, (!tp(M) is an isomorphism. Thus

em is injective.
Let now .L E Mod-A and consider the exact sequence

As Ker I for every ,, the map

is an isomorphism hence

is an isomorphism too.
Now L/Ker embedds into HomR (P, L @ P) and hence belongs

A

to 5)(K,). Thus is an isomorphism so that from the com-
mutative diagram

we get that aL is surjective.
(b) =&#x3E; (a ) follows in view of a) and b ) of 2.3.
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4. w-tilting modules.

4.1. In this section we will prove that under the assumptions a)‘
b), c) of Theorem 3.1 it holds, in general, that ~(Kd) ~ Mod-A.

4.2. Let 1~ be a ring. Generalizing the concept of tilting module
in the sense of Happel and Ringel [HR.] we say that a right R-
module PR is a w-tilting module if the following conditions hold :

1 ) PR is finitely presented.

2) PR has projective dimension ~ 1.

3) EgtR (P, P) = 0.

4) There exists an exact sequence in Mod-R of the form

where P’ and P" are direct sums of direct summands of PR .
Note that when I~ is a finite dimensional algebra over a field K

any tilting module in the sense of Happel and Ringel is a w-tilting
module.

The following theorem is modelled on Brenner-Butler Theorem on
tilting modules (see [HR]) . As in their setting all modules are finitely
generated, we shall give the proof for our more general case.

4.3. THEOREM. Let PR be a w-tilting module, A = End (PR) and
= IL E Mod-A : Tor’ (LA, = 01. Then

b) A E Ð A and Ð A is closed under submodules.

c) For every ME Gen (PR), HomR E 9)A and the f unctors
H: Gen, (PR) - ÐA, T : ÐA --* Gen (PR) given by H(M) = HomR (PR, M)
and T(L) = L @ P, for every ME Gen ( PR ) and L E ÐA, acre acn equiv-

A

alence between Gen (PR) and ÐA. There f ore if QR is an arbitrary cogen-
erator of Mod-.R, then, by setting KA = HomR (PR, QR), we have ÐA =
= ~(gA)·
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PROOF. First of all we show that for every set ~, Ext£ (P, = 0.

As .PR is finitely presented we have an exact sequence in of
the form

where n E N and FR is a finitely generated right R-module.
Applying HomR (-, P) we get the exact sequence

hence every morphism ~ 2013~ PR can be extended to a morphism
Rn - P. Consider now a morphism f : .F -~ P~g’. As 14’ is finitely
generated, f is a diagonal morphism of a finite family of morphisms
from .P into P and hence f extends to a morphism from 1~~ into 
Thus the sequence

is exact. Thus, I as Ext~ (Rn, = 0 we get Ext1 (P, = 0. Now

let Gen (PR). Then there exists an exact sequence

Applying Ext’ (P, - ) we get the exact sequence

As EgtR (PR, M’) = 0 we get Ext, 1 (P, M) = 0.
Conversely assume that Ext.’ (P, .~) = 0 and consider the exact

sequence

Applying we get the exact sequence
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On the other hand, a, by the definition of tp(M), is surjective so
that Hom~ (P, M/tp(M)) = 0.

Applying now the functor Hom~ (-, Mlt,(M)) to the exact se-

quence (1) we get the exact sequence

As Hom~ (P, 0 = Ext£ (P, Mjtp(M)) and as P’ and P"
are direct sams of direct summands of P we get:

so that Hom, 0 and hence M = tp(M) E Gen (PR).
Thus a) is proved.

Let now M E Gen (PR), !1. = HomR (P, M) and f : p(A) - M the
codiagonal map of the morphisms Als.

Then Im ( f ) = tp(M) = M as M E Gen (PR).
Consider now the exact sequence

By applying HomR (PR, - ) to it, we get the exact sequence

where f ~ = Hom, (P, f). As f is the codiagonal map of the morphisms
Als, A f* is surjective and hence Ext~ (P, = 0 so that

E Gen (PR). Thus (3) is a sequence in Gen (PR). Applying now
the functor - (8) P to the exact sequence (4) we get:

A
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where em are surjective and Lop,.,,, is an isomorphism. Thus em is
an isomorphism for every ME Gen (PR). Note that as M’c- Gen 
is an isomorphism too and hence Tor-’ (H(M), P) = 0 so that H(M) E ~( ,~ .
On the other hand recall that .~.1T ~ P e Gen (PR) for every N e Mod-A.

A

Applying now the functor HomR (-, P) to the exact sequence (1)
we get

0 - HomR (P", P) --&#x3E;- HomR (P’, P) - HomR

Thus HomR (.R, P) is a left A-module of projective dimension
 1 as HomR (P’, P) and HomR (P", P) are direct summands of free
modules. In particular Tor2 (LA, IP) = 0 for every E-4 E Mod-A. Let

now L E Ð A and consider the injection

in Mod-A. By applying TorA1 (-, P) we get the exact sequence

Thus J7 E and therefore ~A is closed under submodules. Let now

Z e D~ and consider the exact sequence

Clearly A E 9)A so that (5) is an exact sequence in ÐA.
Applying T we get the exact sequence

Applying H to this sequence we get the exact sequence

as T(L’) E Gen (PR).
Consider now the commutative diagram with exact rows
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Since is an isomorphism, ~L is surjective. Thus, as I

GL, is surjective too. Therefore is an isomorphism and hence b),
and c) are proved.

The last assertion follows from Theorem 3.1.

4.4. PROPOSITION. Let R be a ring, PR a w-tilting module, A =
= End (PR) , QR an arbitrary cogenerator of Mod-R, = HomR (PR, QR).
Then the following statements are equivalent :

(a) Gen (.PR) = Gen (PR).
(b) Gen (PR) = Mod-R.

(c) PR is Z-quasi-projoctivo.
(d) PR is projective.
(e) Ð(KA) = Mod-A.

PROOF. (a) « (c) « (e). Follow by Theorem 4.3 and Proposi-
tion 3.2.

(a) ~ (b). Follows in view of 4) of the definition of w-tilting
module.

(c) =&#x3E; (d) As PR is 27-quasi-projective it is a projective object
of Gen (PR). Since (c) =&#x3E; (a) =&#x3E; (b), Gen (PR) - Mod-R so that PR is
projective.

(d) ~ (c) Is trivial.

4.5. CONCLUSION. Let PR be a w-tilting non projective module
(for an example see [HR,], pp. 126-127), y A = End (PR), QR an arbi-
trary cogenerator of KA = HomR (PR, Then by Theo-
rem 4.3 PR gives rise to an equivalence between Gen (PR) and ÐA
which fulfils assumptions a), b), c) of Theorem 3.1 but, in view of
Proposition 4.4, = ~A ~ Mod-A.

5. Quasi-progenerators.

5.1. In this section, under the assumptions of Theorem 3.1, we
determine a number of sufficient conditions in order that ~(~~) _
= Mod-A.
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5.2. PROPOSITION. Let PR E Mod-.R, A = End (PR). The following
conditions are equivalent :

(a) For every n E hT, PR generates all submodules of P;.
(b) Gen (PR) = Gen (PR).
(c) For every i canonically.

(d) AP is flat and for every M E Gen (PR), HomR (PR, M) @ P
cacnonically. A

If these conditions are fulfilled, then the canonical image of R in End (PR)
is dense in End ( AP) endowed with its finite topology.

PROOF. The equivalences (a) =&#x3E; (b) « (d) are due to Zimmerman-
Huisgen (cf . [ZH], Lemma 1.4) .

The equivalence between (b) and (c) has been noted by Sato
(cf. [S], Lemma 2.2). The last statement is due to Fuller (cf. [F],
Lemma 1.3) .

For another proof of this proposition see [MO], Proposition 5.5

5.3. REMARK. It could happen that for every Me Gen (PR)
M HomR (P R, M) (8) P canonically, but this is not true for every

’ A

In fact looking at Example 3.6 we have, for every .~ E Gen 
the required canonical isomorphism. On the other hand the cyclic group
Z(p) of order p belongs to Gen (Z(pOO)z), but Homz (Z(pOO), Z(p)) = 0 .

5.4. THEOREM. Let APR be a bimodule and assume that APR in-
duces an equivalence between Ð(KA) and Gen (PR). Then ~1. = End (PR)
and the following conditions are equivalent:

(a) O(KA) = Mod-A.

(b) Gen (PR) = Gen (P~).
(c) PR is E-quasi-projective.
(d) PR is quacsi-projective and finitely generated.
(e) PR is quasi-projective.
( f ) AP is flat ( ~. A.g is injective).
(g) AP is a weak generator.
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PROOF. The equivalences (a) « (b) =&#x3E; (c) « (g) follow from Pro-
position 3.2.

(b) ~ ( f ) Follows from Proposition 5.2 in view of Proposition 2.4.

(c) « (d) Follows by Proposition 3.4 from Proposition 8 in [A].

(d) + (e) Is trivial.

(e) ~ (f) Follows from Proposition 4 in [A] in view of Proposi-
tion 3.7.

5.5. DEFINITION (Fuller [F]) . A module PR E mod-R is called a
quasi-progenerator if PR is quasi-projective, finitely generated and
generates all its submodules.

We are now ready to prove the concluding theorem of this sec-
tion.

5.6. THEOREM. Let APR be a bimodule. The following conditions
are equivalent :

(a) APR induces an equivalence between Ð(KA) and Gen (PR).

(b) APR induces an equivalence between Mod-A and G-en (PR).

(c) PR is a quasi-progenerator and A = End (PR).

(d) A = End (PR), PR is quasi-projective and generates all its

submodule8l AP is faithfully flat-

If these conditions hold then :

1) Gen (PR) = Gen (PR) and KA is an injective cogenerator of
Mod-A.

2) The canonical image of .R in End is dense whenever
End (AP) is endowed with its finite topology.

PROOF. (a) ~ (b) By Theorem 5.4 and Proposition 2.2.

(b) ~ (c) By Theorem 5.4 PR is quasi-projective and finitely getl-
erated and Gen (PR) = Ge (PR). Then PR generates all its submod-
ules.

(b) ~ (d) Since A E Im (H), A = End (P~). By Theorem 5.4 AP
is flat and a weak generator. Thus AP is faithfully flat.
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(d) =&#x3E; (a) By Lemma 2.2 of [F] Gen (PR) = Gen (PR). Hence by
Proposition 5.2, for every M E Gen (PR), .M~ ^~ TH(M) canonically.
Let Since E Gen (PR) we have T(L).
It follows .T (.H~T (L)) ~-- T (L) hence as AP is faithfully
flat.

(c) =&#x3E; (d) By Lemma 2.2 of [F] Gen (PR) = Gen (PR) so that, by
Proposition 5.2, AP is flat. It is well known that AP is faithfully flat
if and only if AP is flat and moreover for every right ideal I of A
such that IP = P we have I = A. Thus assume IP = P. As PR is
finitely generated there exist finitely many endomorphisms ... , an E I

such that This yields an epimorphisms

Since 1’R is quasi-projective this epimorphism splits so that there

exists a morphism such that We have

where b i E A. Thus so that I = A.

Suppose now that the conditions above hold.

1) We know that Gen (PR) = Gen (PR).
Moreover gA is injective as AP is flat (recall that K, - HomR (PR, Q~)
where QR is an injective cogenerator of and KA is a cogen-
erator as Im (.H) c +(K~).

2) Follows from Proposition 5.2.

5.7. REMARK. The equivalences (~)~&#x3E;(c)~&#x3E;(~) and statements
Gen (PR) = Gen (PR) in 1) and 2) of 5.6 are due to Fuller (see [F]
Theorem 2.6).

The equivalence (c~) « (b) is due to E. Gregorio ([G], Theorem 1.11) .

5.8. REMARK. Let PR be a quasi-progenerator and A = End (PR).
Then APR induces an equivalence between Ð(KA) and Gen (PR). While
Ð(KA) = Mod-A in general Gen (PR) -=1= Mod-R as the following ex-
ample shows.

Let .R be a right primitive ring, P~ a faithful simple right R-
module, A = End (P~). Since PR is a quasi-progenerator, APR in-

duces an equivalence between Mod-A and Gen (PR).
Mod-A is the category of right vector spaces over the division

ring A and Gen (PR) is the category of all semisimple modules of the
form PR’. Thus, if I~ is not right artinian, Gen (PR) -=1= Mod-..R.
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6. Equivalences and dualities.

6.1. Denote by the category of all compact Hausdorff left
modules over the discrete ring and let T be the topological quotient
of the real field R, endowed with the usual topology, modulo the
group Z of rational integers. For every N E R-OM, let _

- Chomz (N, T) be the set of all continuous morphisms of abelian
groups from N into T.

rl(N) is an abelian group which has a natural structure of right
R-module defined by setting

For every M G MOd-R let 1-’2(.l~l) be the left -R-module Homz (M, T)
endowed with the topology of pointwise convergence.

It is well known that r2(M) is a compact group so that r2(M) E
E R-CM. In this way we obtain the contravariant functors

which coincide with the usual Pontryagin Duality functors when
1~ = Z. Clearly, from Pontryagin’s classical results, we have that

and lMod-R · -r2 ) is called the Pontryagin
Duality over .1~. For more details about this duality see [MO].

6.2. Let APR be a bimodule with A = End (-P~). Consider the fol-

lowing commutative diagram of categories and functors:

where and for every
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N, N’ E let Chom~ (N, N’ ) be the group of all continuous R-

morphisms from N into N’.
Clearly A ~ Chom~ K) canonically.
Denote by C(RK) the category of all topological modules M over

the discrete ring .I~ which are topologically isomorphic to closed sub-
modules of topological powers of RK.

As Rg = r2(PR) E .R-CM we have that e(RK) C R-CAI.
Let L E Mod-A. N E .R-CM. We have the canonical isomorphisms

in R-CM and Mod-A respectively,

where Hom~ (L, KA) is regarded as a topological submodule of the topo-
logical product Note that, since RK is compact and Hom~ (L, 1(A)
is closed in it follows that HomA (L, KA) is compact. Clearly the
topologically isomorphic modules T2(L X P) and HomA (L, KÁ) have
the same characters.

and

be the canonical morphisms:

and

Then, by means of the Pontryagin duality over and m,v cor-

respond respectively to the canonical morphisms or, and 

Indeed let L E Mod-A and consider the diagram:
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where ffJL associates to every $ E HomR its transposed
by r2 and VL = ChomR where

is the natural isomorphism. Set = We want to show
that for every X: L ~ ~A we have

Let We have

Therefore

and we have for every l E L so that

Thus (1) is proved.
For N E ..R-CM the correspondence between er1(N) and is proved

by an adjointness argument.

6.3. COROLLARY. Let L E Mod-A (N E RCM). Then w: (WN) is an
isomorphism (a topological isomorphism) if and only if or, (er1(N») is an
isomorphism.

6.4. From Theorem 3.1 and from 6.2 we easily obtain a theorem
of representations for dualities.

6.5. THEOREM. Let R, A be two rings, DA a subcategory of Mod-A,
RC a subcategory of .R-CM. Assume that

a) AA E DA and DA is closed under taking submodules.



229

b) Be is closed under taking closed submodule.- and topological
products.

c) A duality Hl: is given with Hl , .g2
additive f unctors.

Then there exists a bimodule RKA with the following properties :

1 ) RK E Re and A ~ ChomR (K, K) canonically.

2) ÐA = ~(g~.), Re == e(LK) where e(RK) consists of all compact
modules which are closed submodules of topological powers of RK.

4) For every .L E ÐA, 7 (OL is an isomorphism and for every N E Be.
úJN is a to p ological isomorphism.

PROOF. Consider the commutative diagram

where .h’ = r2oH1, G = and gR = 
Then 9, is closed under taking homomorphic images and arbi-

trary direct sums. Set APR = Clearly A ~ End (PR) can-

onically. Set QR = Homz T). Then QR is an injective cogenerator
of Mod-R. We have the canonical isomorphisms:

At this point we can apply Theorem 3.1 getting:
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hence

and for every L E ÐA, I ~L and e,, are isomorphisms. Then

11l, H2 ,~ 112 and statement 4) follows by Corollary 6.3.

6.6. Let ,K E A = Chom~ (.g, g). Assume that the couple
of functors ( 41, 112) induces a duality between D(KA)
VVe say that this duality is good if C(RK) has the extension property
of K-characters. This means that for every N E and for every
(closed) submodule N’ C N every continuous morphism of N’ in R.K
extends to a continuous morphism of N in K.

In [MO] it was proved that the considered duality is a good
duality if and only if 5)(KA) = Mod-A.

The results of Section 4 solve an old problem of us: namely there
exists dualities between ~(g~) and which are not good duali-
ties.
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