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The Lazarsfeld-Rao Problem for Buchsbaum Curves.

GIORGIO BOLONDI - JUAN C. MIGLIORE (*) (**)

0. Introduction.

In recent years there has been a great deal of work on the subject
of Buchsbaum curves (sometimes called arithmetically Buchsbaum
curves). These are the most natural curves, from a cohomological
point of view, after the arithmetically Cohen-Macaulay ones, and they
are a natural generalization of those: see, for instance, [SV], [BM1],
[BM2], [EF], [Al], [A2], [GM1], [GM2]. In particular, in the last four
papers quoted above the homogeneous ideal of a Buchsbaum curve
is deeply investigated.

In this paper we concentrate on some geometrical properties of
these curves and on their even liaison classes, and in particular on
that we have called the LR-property (see below). This property is
crucial for achieving a geometrical description of the structure of an
even liaison class, but to date only certain very special even liaison
classes are known to possess the property. On the other hand, it has
been conjectured that Every even liaison class possesses it. The central
result of this paper is that every even Buchsbaum liaison class pos-
sesses the LR-property.

(*) Indirizzo degli A.A.: G. BOLONDI: Dipartimento di Matematica e

Fisica, Universita di Camerino, I 62032 Camerino (Macerata), Italy; J. C.

MIGLIORE : Department of Mathematics, Drew University, Madison, NJ 07940,
USA. Current address: Dept. of Mathematics, University of Notre Dame,
Notre Dame, IN 46556, USA.

(**) This material is based upon work done while this Author was sup-
ported by the North Atlantic Treaty Organization under a Grant awarded
in 1987.
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To accomplish this we have to study two different topics and the
combine the results: 1) how to give a structure to an even liaison
class of curves in P3 ; and 2) Buchsbaum curves in P3 and their ideals.

The former is the first part of a research program to study the
structure of even liaison classes in general: the case of curves in P3
is treated here in full detail. An extension of these techniques to
codimension-two subschemes of lPn is outlined in [BM3] and applica-
tions of this approach (such as specialization to stick-figures; see

e.g. [HH], [Se], [Ci]) are contained in [BM4].
After this paper was finished, the authors received a paper by

M. C. Chang ([CH]), where a totally different approach to the study
of Buchsbaum subschemes in codimension two is given. It seems

reasonable to expect that the part of the present paper related to
minimal Buchsbaum curves can also be obtained from this point of
view.

Fix an even liaison class L. Roughly speaking, we say that the
LR-property holds if it is possible to deform every curve in £ to a
fixed « minimal ~~ curve in E with an arithmetically Cohen-Macaulay
tail suitably attached by means of standard procedures (« basic double
links »). Hence this property allows one to describe the geometrical
structure of the whole class in terms of the minimal curve.

If in E there exists a curve Y satisfying e( Y) c a( Y) - 4, then L
has the LR-property with Y playing the role of the « minimal» curve.
(This is the theorem by Lazarsfeld and Rao [LR] motivating our
definition). Our paper is a first attempt to show that this property
holds for other liaison classes.

In § 1 we outline a general approach to the LR-problem, and
give a number of computational tools which are valid in every liaison
class and which we use subsequently in the Buchsbaum case.

In § 2 we turn to Buchsbaum curves. Using facts from several
recent papers, we combine the approaches used in [BSV] and [GM2].
Our main goal is to prove a key technical result (Corollary 2.17)
about a special type of Buchsbaum curve, but as a consequence we
give a careful description of them. In particular, we also give a great
deal of information about the minimal curves: for instance, combining
Theorem 2.9 with Corollary 2.18 one can produce the graded Betti
numbers of a minimal free resolution for such a curve.

In § 3 we prove that every Buchsbaum liaison class has the LR-
property, using the approach of § 1. We show that « almost » every
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Buchsbaum curve can be easily handled with this approach. The
difficult special case is disposed of using the technical results of § 2
and the computational tools of § 1.

Throughout this paper k is an algebraically closed field of charac-
teristic zero, and curves are assumed to be locally Cohen-Macaulay
and equidimensional. We refer to [R1] and [LR] for standard facts
about liaison of curves in P3.

The idea of studying the LR and related problems was suggested
to the second author by J. Harris, and in some sense the inductive
approach used here has its origin in those conversations. The results

of § 2, central to this paper, y could not possibly have been obtained
had it not been for many conversation with A. V. Geramita. We are

extremely grateful to both for their mathematical influence and for
their constant encouragement and enthusiasm.

We also thank the Department of Mathematics of Trento Uni-

versity for its hospitality during the preparation of this paper.

1. The Lazarsfeld-Rao problem.

In this section we discuss the general problem for liaison classes
of curves in P3 which is suggested by the paper [LR]. We outline an
approach which we shall use in this paper to solve the problem for
arithmetically Bichsbaum liaison classes, and which we hope will be
useful to prove the result in general.

Recall that if Z is a subscheme of Pn corresponding to a homo-
geneous (saturated) ideal I of ... , Xn] then the Hilbert function
of Z is H(Z, t) = dim (k[Xo, ... , Also, the first difference
(also called Castelnuovols f unction in [D]) is dH(Z, t) = H(Z, t) -

-1 ). In the case where Z c P2 of codimension 2, and espec-
ially where Z is the hyperplane section of a curve C inp3 7 4H has
of course been studied extensively and used with great success to

give results about Z and C. Notice that knowing H(Z, t) is equivalent
to knowing the numerical character ([GP]) of Z, and that from dg
we can reconstruct H(Z, t).

Recall also that for a curve C in P3, the Hartshorne-Rao module
M( C) is defined by M(C) = 3c(n)). This is of fundamental

M6Z

importance in the theory of liaison of curves in P3, and it has been
generalized to other dimensions (cf. [R1], [R2], [Sc]7 [M4]) .
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From now on we assume that curves are in P3. We begin with
a key observation. Recall

THEOREM 1.1 ([B], Corollary 2.3 and the subsequent remark).
Let X and Y be curves with hO(P-, Jx(n)) = hO(P3, 3,(n)) for all n, and
assume that ~(X ) ~ M( Y) (as graded modules, with the saume grading).
The X and Y have the same degree d and arithmetic genus g, they are
in the same irreducible component o f Hilb, PI 3 I and there is a deforma-
tion f rom one to the other through curves all having the same Hartshorne-
Rao module. 0

DEFINITION 1.2. Let X and Y be curves. We say that X and Y
have the same cohomology if they satisfy the hypotheses of Theorem 1.1.
Notice that this implies that they are in the same even liaison class.

COROLLARY 1.3. Let X and Y be curves and let H be a hyperplane
such that dim (X r18) = dim (Y f1 H) == 0. If X r1 .H and Yr)H
have the same Hilbert function and as above, then X
and Y have the same cohomology (and hence the conclusion of T heorem 1.1
holds).

PROOF. Let .L be a linear form whose vanishing gives .H. Let

be the collection of homomorphisms in-

duced by L on M(X). For any n we have the exact sequence

Let g~. be the kernel of qn(L). Since .~( Y), we have a
similar exact sequence for Y, with the corresponding kernel of the
same dimension as that for for each n. Abusively, we may thus
write

For every n we have + 1) = hO(JYnH(n + 1)), by hypoth-
esis, and for small n the first two terms are 0. Therefore h°(3x(n)) ==
== h°(3y(n)) for all n, so we may apply Theorem 1.1. 0
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Before giving the key definition of this paper we need to recall
a particular way for constructing curves in a liaison class. Take a
curve X in P3, a surface F containing X and a surface 8 meeting F
properly. Choose a sufficiently general surface (of large degree) G
passing through X and link X to XO by using F and G, and then X ~
to Y by using F and S. G. Y does not depend on G, and set-theo-
retically we have Y = X u (F r1 S). As homogeneous ideals, we
have Iy = + (F). This procedure is called basic double linkage
(cf. [LR]). We shall call Y a basic double link of X.

Recall also that given any graded module M of finite length, any
sufficiently large leftward shift of M cannot be the Hartshorne-Rao
module of any curve (cf. [Sw] or [M2]). Hence it makes sense to

talk about the leftmost shift of M that is the Hartshorne-Rao module
of some curve. The set of curves in the associated even liaison class
C which corresponds to this leftmost shift is denoted by ~ and
those corresponding to subsequent shifts etc.

DEFINITION 1.4. Let £ be an even liaison class. We say that £
has the LR-property in the following conditions hold:

i) If X and Y are curves in £.0 then X and Y have the same

cohomology (in the sense of Definition 1.2).

ii) Given a curve X and a curve Y in Eh 9 h &#x3E; 1, then there
exists a sequence of curves X = X~, .~Y2, ..., .Xm such that Y is a

deformation of X m through curves with fixed Hartshorne-Rao module,
and every Xi is obtained from Xi_1 by a basic double linkage. 0

Notice that the hypothesis in i) implies that every two curves
in EO have the same degree and genus, y and that they lie in the same
irreducible component of the Hilbert scheme.

The historical motivation for this definition is the paper by La-
zarsfeld and Rao [LR], where they prove the following theorem:

THEOREM 1.5 ([LR], 1.4). ..Let ~ be an even liaison class where there
exists a curve X satis f ying e(X) c s(X ) - 4. Then C has the LR-prop-
erty.

It is clear that when a liaison class has the LR-property, then
a quite complete description of the structure of the liaison class can
be given in terms of the curves lying in the minimal shift. A natural
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question then is the following: which even liaison classes have the
LR-property:

CONJECTURE ([M1]). Every even liaison class has the LR-property.

As we have seen, the LR problem consists in showing that, at

least cohomologically, the term (minimal)&#x3E; is uniquely defined for

any even liaison class C, and that for every non-minimal curve C E C
there is a curve Y obtained from a minimal curve by a sequence of
basic double links, such that Y has the same cohomology as C. Our
next step is to show that in fact all we need consider is basic double
links using planes (i.e. linear forms).

LEMMA 1.6. Let X be a curve, FE Ix and Gl , ..., Xsl,.
Suppose Ci is a curve obtained from X by a basic double link using F
and Gi . T hen

a) 01 and O2 have the same cohomology.

b) Given any sequence of curves X = Xo, Xl, such that

Xj is obtained from Xj-l by a basic double link using the same F and
a linear form Lj 7 it follows that Xd and Ci , i = 1, 2, have the same
cohomology.

PRO OF.

a) It follows from [BM4], Lemma 3.8.

b ) Let C be either C, or O2 and G be either Gl or G2 . Note that
I, = G - Ix + (I’). Now, Ix, = L, - Ix + (I’). Hence

Continuing in this way, I Xd = (Ld ....Ll) Ig + (F). That is, Xli can be
obtained from X by a single basic double link using F and the surface
(.Ld ....Ll), which also has degree d. Then by a) we get that Xd and
C have the same cohomolohy. 13

LEMMA 1.7. Let Xl , X2 be curves with the same cohomology and let
.F’1 E Igi, 14’2 E Ix, be forms of the same degree. Perform basic double
links on each of X2 using h’1, I’2 respectively and a linear form L
(as above), producing curves Yl, Y2. Then Y, and Y2 have the same
cohomology.
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PROOF. Choose Gl E IXl’ general forms of the same degree
» 0. Perform the two links on each (as in the definition of basic

double linkage, with L playing the role of S) which produce the
curves Y2 . Of course Note furthermore that
our condition that two curves «have the same cohomology)&#x3E; also
forces the equality = for all n. Therefore, since
the corresponding complete intersections use surfaces of the same

degrees, we get after two links for each that - 

for all n. 0

REMARK 1.8. (a) The property that two curves ~2 have the
same cohomology does not guarantee that any link possible for Xl
can also be done for ~2 with surfaces of the same degree. (See Re-
mark 1.10 (b).) However, it does guarantee that = 

for all n, by definition, so we do not lose any generality in our
hypothesis that deg Fi = And since the Gi play no real role
in the resulting curves Yg, it is enough that we choose deg Gi » 0.

(b) Of course, Lemma 1.7 is true if we replace L by a form
of arbitrary degree, or if we use different forms (but of the same

degree) for Xi and X2. D

We now come to our general plan of attack for the LR problem,
which we shall use in the special case of arithmetically Buchsbaum
curves in the next two sections.

THEOREM 1.9. Let £ be an even liaison class with the following
two properties:

(1) Any two curves X, X’ E CO have the same cohomology.

(2) For every curve X E Ell (h &#x3E; 0) there exists a curve Y E C"
with the same cohomology as that of X (possibly X itself), satisfying
the following condition: There exist surfaces o f some degrees a and b
linking Y to a curve Yl, and sur f aces of degrees a and b - 1 linking Yl
to a curve Y2 E £,h-l.

Then £ has the LR property.

PROOF. We only need to show that given any curve X 
( h &#x3E; 0) and any minimal curve there exists a sequence of curves
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Xo, Xl, ... , Xh such that for each i Xi E Ci is a basic double link of
Xi-l E and Xh has the same cohomology as that of X. The

proof is by induction on h.
Let Let Y be as in the statement of (2) and

perform the indicated pair of links to a curve Y2 E Co. Suppose the
pairs of surfaces used in (2) are and F2 , where

deg I’1 = deg F2 = a and deg G1 = deg G2 -f- 1 = b.
Now, let .L be a general linear form and perform a pair of links

starting with Y2 using .F’2 , G2 E IYa and then I’2 , EG, E 7y to a curve
Z E El. Note that Z is a basic double link of Y2 . But by assump-
tion (1) and Lemma 1.7, Z has the same cohomology as a similar
basic double link of On the other hand, by considering the
degrees of the surfaces used in the links, we see that Z has the same
cohomology as that of Y, i.e. that of X.

The proof of the inductive step is identical to that for h = 1,
simply with Y2 being not a minimal curve but rather a curve having
the same cohomology as a « basic double link curve ». C7

REMARK 1.10. (a) The underlying idea, that we can attack the
LR problem by linking down to smaller curves as in Theorem 1.9 (2),
was discussed in the last chapter of [M1] (although the results there
are not nearly as strong as Theorem 1.9). This discussion, in turn,
was motivated by work of Gaeta ( [G1 ]) .

Notice that to achieve the hypotheses of Theorem 1.9 it is enough
to show the following:

(1) For any two curves X, X’ E Co there exists a sequence of
pairs of links, beginning with X and ending with X’, such that for
each pair the degrees of the surfaces in the first link are the same
as those in the second.

(2) For any X E Ch (h &#x3E; 0) there exists a similar sequence of
pairs of links starting with X and ending with a curve Y as in The-
orem 1.9.

We believe that these conditions are true in any even liaison class,
and indeed that there exist minimal generators at each step which
do the job. We do not know that this is true even in the case of
arithmetically Buchsbaum curves, but examples where at least (1)
holds are contained in [M2] and [M3].

(b) In Theorem 1.9 (2), it is necessary to bring in the curve Y.
That is, the property that there exist surfaces of degrees a and b
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which give a link is not preserved under deformation, even through
curves with the same shift of the same Hartshorne-Rao module. For

example, let Y be the union of a plane cubic and a line, meeting at
one point. Let Y’ be the complete intersection of two quadrics.
Y and Y’ are arithmetically Cohen-Macaulay, so the notion of «shift
of the Hartshorne-Rao module » makes no sense. However, let Z be
the disjoint union of two lines. Let C (resp. C’ ) be the curves obtained
by performing the liaison addition of Z and Y (resp. Z and Y’), using
two (not necessarily irreducible) quadrics Fl E Iz, (resp. 
G2Ely,).

For a general hyperplane H, we can sketch C r1 H and C’ r1 H:

Figure 1

One can check that C n H and C’ n H have the same Hilbert func-
tion. Also, by Liaison Addition. Hence by Corol-
lary 1.3, C and C’ have the same cohomology.

But and I,, - Now, la, con-
tains a link (i.e. a regular sequence) in degree 4 while I, does not
(since everything of degree 4 contains the plane of the cubic as a
component). In fact, even the number v of minimal generators is

not preserved: C has 6 while C’ has 5. 0

In § 3 it will be important to understand how the function 4H
behaves when we perform a basic double link. In fact the behavior
is quite simple, and we now derive the basic facts.

Let C be a curve contained in a surface 2~ of degree b. Perform
a basic double link by using ~b and a plane II. Let Z be II,
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and Y the curve whose ideal is defined by

Recall that

where 1~ is a general plane.
By construction we have an exact sequence

Consider the commutative diagram

from which we get the exact sequence of the kernels:

Now let .H be a general plane, and tensor this sequence with On,
thus getting

Notice that .L = H n II is a line, and that Z n H is a set of points
on L; it is the set of points on L cut out by the curve Eb r1 H c H.
Then from the exact sequence

we get

Hence (##) becomes
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Passing to the long exact cohomology sequence we have

If t  b, then it follows that

If t ~ b, the sequence gives

Hence we must calculate the hl’s. From the exact sequences

we have

and

where

and
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Since C and Y are evently linked, then dim g = dim M. Hence we

have

On the other hand, by (#) we find (Z is a complete intersection)

and hence, Vt,

But it follows from a standard computation that

Hence, for t&#x3E;b-2 we get

Moreover, Vt, we have

and thus, for t ~ b -1, we have

Hence, for &#x3E;~20131, we get

In this way we have proved the following
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PROPOSITION 1.11..Let C, b and Y as above. Then

This proposition has an immediate corollary:

COROLLARY 1.12. Let C be a curve, and per f orm a basic double
link using a surface Eb of degree b containing X and au surface Er of
degree r meeting Eb properly. If Yr is the curve thus obtained, then

PROOF. Thanks to Lemma 1.6 (b), it is enough to consider a

basic double link performed by using E, and the union of r planes
r

Ir. Let us call Yo = C and Yi = (Eb r1 lIi) (this means
that Yi is obtained from Yi-, by a basic double link using E, and lIi).
But now it is enough to iterate r times the procedure of Proposi-
tion 1.11. 0

Later on it will be useful to handle the differences between two
consecutive values, so we state it as a corollary:

COROLLARY 1.13. Let C, Ib, II and Y be as in Proposition 1.11,
and let H be a general plane. Then (t ~ 2 ) :

Finally, we derive another useful computational tool. Recall that
for a curve C, e(C) = max ~n~ hO(wo(- n)) =1= 01.
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LEMMA 1.14. Let C be a curve, F E Let Y be the result of a
basic double link performed on C by F and a general plane

PROOF. Assume that C is linked to Yo by .I’ and a form of degree a,
and that Yo is linked to Y by F and a form of degree a + 1 (namely
the original form of degree a times a linear form). Let X be the

complete intersection linking C to Yo and ~’ that linking Yo to Y.
Note that = hO(Jx1(t)) for t ~ a - 1. We have

Hence for t c a~ -1, we have

In particular,

2. Basic results on Buchsbaum curves.

In this section we first review a number of facts about Buchsbaum
curves. Our main goal is a technical result (Proposition 2.16, Corol-
lary 2.17), which will allow us in § 3 to handle the only difficult special
case in the proof.

Recall the following standard definitions for a subscheme Z of Pn
corresponding to a homogeneous (saturated) ideal I in k[Xo, ... , 

1 ) 

2 ) v(Z) = number of minimal generators of 1.
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Now, a curve C in P3 is called arithmetically Buchsbaum (or simply
Buchsbaum) if its Hartshorne-Rao module is annihilated by the maxi-
mal ideal m of k[Xo, ..., While there has been a surge of activity
on the subject of Buchsbaum curves recently, an important reference
on these and on the broader subject of Buchsbaum rings is the beau-
tiful book [SV]. Up to shift, the Hartshorne-Rao module of a Buchs-
baum curve is determined by the dimensions of its graded compo-
nents (as k-vector spaces). We will call the associated liaison class
a Buchsbaum liaison class. This motivates the following definition:

DEFINITION 2.1 ([BM2]). Let (n,, ..., nr) be a sequence of non-
negative integers, where 0 and 0. Then is the even
Buchsbaum liaison class associated to a graded module whose com-
ponents have dimension n1, ..., nr respectively, and which is anni-
hilated by m. If if is such a module then diam M= r. The Buchs-
baum type of is the integer N = n, + ... + nr. 0

From the point of view of liaison, an important first step is to
know exactly which shifts of the Hartshorne-Rao module can actually
occur for curves in the even liaison class. In the case of Buchsbaum
curves we have the following:

THEOREM 2.2. Let 

(a) The Hilbert function H( C n H7 t) is independent of H, as

long as dim ( C r1 H) = 0.

(e) Curves C for which dim M(O)2N-2 = nl exist and can be con-
structed directly.

PROOF. (a), (c), and (d) are from [GMI], (b) is from [Al] (and a
new proof appears in [GM2]), while (e) is from [BM2] and uses Liaison
Addition ([Sw]). D

As a result of Theorem 2.2, the leftmost possible non-zero com-
ponent for the Hartshorne-Rao module of a Buchsbaum curve in



82

is in degree 2N - 2. Given then, it is natural
to measure the shift of 3f(C) in terms of this extremal value, as
discussed in § 1:

DEFINITION 2.3 ([BM2]). (h ~ U ) is the subset of 

consisting of those curves C whose first non-zero component (which
has dimension nl) occurs in degree 2N - 2 -~- h. 0

REMARK 2.4. For we have by The-
orem 2.2 (c). Furthermore, a(C) = 2N --f- h if and only if C satisfies
the condition of Theorem 2.2 (d). These curves play a special role
in the theory of Buchsbaum curves, as we will see shortly (and as
was noted in [GM1] and [BM2]). ll

In [LR], an important role was played by the integer e(C) (see
§ 1 ). In the case of Buchsbaum curves, we have certain limitations
on e :

THEOREM 2.5. Let (h ~ U).

(a) I f C lies on a o f degree 2N then = 2N + h +
+ r - 5 and C can be directly linked to a curve in L°1. , . nr .

(b) In any ease, 

(c) Lnl,., n,. contains a curve satisfying the hypothesis o f Theorem 1.5
i f and only i f r = 1.

PROOF. (a) and (c) are from [BM2] while (b) is from [GM2]. As
we shall see, there are many possibilities for extremal curves for (b)
in addition to those described in (a). The fact that Ln has the LR
property was used heavily in [BM1]. D

An important question in general, and for us in particular, y is to
describe the degrees of the minimal generators of Ie, and the number
v( C). For special (and important ! ) curves we shall say more shortly,
but for now we recall some results.

THEOREM 

(b) .Let T hen I C is generated in
degree c t -E- 1.
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PROOF. For (a), the first inequality is from [BSV] (and we shall
examine their approach shortly) the second is obtained immediately
from [A1] (and reproved in [GM2] by a different method), and the
third is from [GM2] (and follows immediately from Remark 2.4).
Finally, (b) is from [GM1]. 0

COROLLARY 2.7 ([GM2]). If lies on a surface of degree
2N then v( C) = 3N-~- 1. 0

EXAMPLE 2.8. The converse to Corollary 2.7 is false. In fact,
we now show how to produce a curve in L:1".nl (with h rather large)
with a(C) = 2N -f- h (cf. Remark 2.4) and having exactly 3N + 1
minimal generators all in degree 2N + h.

Begin with which has exactly 3N + 1 minimal gen-
erators. We shall see (Corollary 2.18) that 1, has 3ni minimal gen-
erators in degree 2N -E- i - 1 (except for i = 1, where there are

3nl + 1). Say that IC = ..., Perform a basic double link

using a minimal generator I’k of degree &#x3E; 2N, and a general plane H.
The new curve 01 has

Now a(Cl) = 2N + 1, v(C,) = 3N -~-- 1, and the degree of each gen-
erator except Fk has increased by one. Repeating this often enough
« collects» all the generators in the minimal degree. ll

Our idea in this section is to use the above groundwork to com-
pare two different approaches to the ideal of a Buchsbaum curve:
that suggested by [BSV] and that of [GM2]. Accordingly, we begin
with the former.

THEOREM 2.9 ([R1]~. Let C be a curve in P3. Assume that M(O)
has a minimal free resolution

Then Ie has a minimal resolution of the form
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In our case, following [BSV], we have the Koszul resolution of k,
suitably tensored and shifted. This gives Li (Oi4) as above,
where Li are free S-modules of rank H · (4) : But now, let .K be the

(i)
cokernel of ar :

Once we fix the shift h we know J exactly, so we can compute all
the cohomology of I~ (sheafified). Now, by Theorem 2.9 we have

As a special case, note that if v(C) = 3N + 1 (for example as in

Corollary 2.7) then t = 0 and the kernel can be easily computed.
The case t &#x3E; 0 is somewhat harder since we must consider the li
as well.

Ler and let us examine the corresponding K.

We conclude

LEMMA 2.10.
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LiF,mmA 2.11. Let C E 

(a) I f a(C) = 2N + h then + h + 1 for all i. the

sequence (*).)

(b) For any degree d, the size of the image in (Ic)d+l o f is

dim (Ic)d+l- (number of minimal generators in degree d + 1) -

Inasmuch as this section will be primarily concerned with curves
C c- for which ~(C)a_2 ~ 0 (i.e. a(C) = 2N -E- h), we adopt a
special notation for these:

NOTATION 2.12. Let C E satisfying a(C) = 2N -E- h. Then

vd = number of minimal generators in degree

sd = number of components of @ 8(- Zi) such that
(d ~ 1 ) (see the sequence (*)) .

Note also that nd = dim

Now we turn to the approach in [GM1] and [GM2]. From the
exact sequence

(where L is a linear form not vanishing on any component of C, H
is the corresponding hyperplane, and C as usual is Buchsbaum), we
obtain

Let C E be a Buchsbaum curve for which a(C) = 2N -~- h.
As in we can schematically represent (thanks to the
above isomorphism and Theorem 2.2 (d)) as follows:
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degree

Figure 2

That is, in each degree we choose a (vector space) basis for IejL’Ie
and extend it to a basis for by adding ni vectors corresponding
to M(C)(- 1). (Note ni may be 0 for i =1= 1, r.) However, we modify
the notation of [GM2] somewhat, as follows. First, note:

LEMMA 2.13 ([GM2]).
(a) The minimal generators of IeIL’Ie are in one-to-one, degree

preserving correspondence with those of Ie.

Let zxt be the maximal ideal in the coordinate ring of the plane H. Then

(c) then the bound of (b) is sharp for
all d.

N’ow,
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in fig. 3 the bottom section represents the smallest possible dimension
of the image (Lemma 2.13 (b)) and ed represents the amount
that the dimension od actually exceeds this lower bound

(end = 0 if v(C) = a(C) + N + 1 by Lemma 2.13 (c).) Then the re-

maining part of the basis for consists of minimal gen-

erators, the number of which by Lemma 2.13 (a) is what we have
called vd . Formally, we now add

NOTATION 2.14.

The symbols ed, sd, vd and nd (cf. Notation 2.12) will be used frequently
in what follows.

We are now ready to combine these two approaches. What we
shall do is to compute the dimension of the image in

in two different ways and set the two answers equal to
each other. We begin with the lowest degree, 2N -~ h.

PROOF. By the second approach we have

By the first approach we have that the dimension of the image in
of is 4v~ - 4nl- s,,. Hence

Therefore vo = 2n, + 1 + el + s, as desired. This answers affirma-

tively a question of [GM1] (Remark 4.4), as has also been noted by
Amasaki ([A3]). C(

Our next result is the key technical point of the paper.
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PROPOSITION 2.16. If C E with a( C) = 2N + h then for any
we have

PROOF. Note again that the vector space in (b) is a subspace of
· The proof is by induction on d. For d = 1 we have

(using Lemma 2.15)

degree

Figure 4

Now, a quick calculation gives

And by the first approach,

Hence Thus is (a), and for (b) we substitute
vi = 3nz + e2 + s, into the previous computation. (Note that there

is an extra in this case e2.)
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Now the inductive step. Assume the statement is true for all

t  d. Then in particular we have in degree 2N -~- h -~- d

degree

Figure 5

Substituting a substitution gives

On the other hand, using the first approach we get

dim ml .
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By induction we have

Making these substitutions and simplifying, we get

Combining (1) with (2) gives

as desired. This proves (a), and (b) follows by substitution.
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PROOF. A quick calculation gives that the left-hand side of the
inequality is

degree

Figure 6

By Lemma 2.13 ( b ) and definition,

(the latter by Proposition 2.16).
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PROOF. C clearly satisfies the hypothesis of Lemma 2.15, Pro-
position 2.16. Now, since a(C) = 2N we know that v(C) = 3N + 1
(Corollary 2.7). Then si = 0 for all i since t = 0 in Theorem 2.9.
On the other hand, ei = 0 for all i by Lemma 2.13 (c). This proves (a).

For ( b ), note that

Also, L1H(O n .H~, 2N + r - 1) = 0 by Theorem 2.5 (a) and a simple
calculation. Now add:

Therefore we have equality at each step in Corollary 2.17, and the
result is a simple calculation. D

REMARK 2.19.

(1) This verifies the conjecture at the end of [GM1]. M. Ama-
saki has informed us ([A3]) that he can derive Corollary 2.18 (b) with
his techniques.

(2) Of course, Corollary 2.18 shows that the Hilbert function
of a curve C in is uniquely determined, since x(C t1 H) _
-2N-1.

(3) We believe that a result very much like Proposition 2.16
should be true in general. In any case, we have verified that any
curve in Lnl...nr lying on a surface of degree 2N satisfies Corollary 2.18,
suitably re-indexed. (Recall Corollary 2.7. ) C1

3. The LR-property for Buchsbauxn curves.

We have now laid the groundwork, and are prepared to prove
the main result of the paper.
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THEOREM 3.1. Every Buchsbaum laison class has the LR-property.

PROOF. The approach is via Theorem 1.9, and we now outline it.
Consider the even liaison class 

(1) If X, X’ E then they have the same cohomology by
Corollary 2.18 and Corollary 1.3.

(2) For h &#x3E; 0, we have three cases for (recall The-
orem 2.5 (b), Theorem 2.2 and Remark 2.4):

(a) If e(X) &#x3E; 2N --E- h + r - 5 then X can be linked in two
steps to as required.

(b) If e(X) = 2N -~- h -~- r - ~ and then X
can be linked in two steps to as required.

(c) If e(X) = 2N -~- h -~-- r - ~ and oe(X) = 2N + h then we
will identify all the possible cohomologies for X (in terms of 4H) and
show that for each there exists the desired curve Y with the same

cohomology. In fact, Y itself is obtained from a minimal curve by
a sequence of h basic double links using planes.

Parts (a) and (b) are contained in the proof of Proposition 2.7
of [BM2], but since the proofs are short we repeat them here for
completeness.

If e = e(X) &#x3E; 2N + h + r - 5, then it follows from Theorem 2.6
(or from Castelnuovo-Mumford) that we can find a link using surfaces
of degree a = a(X) and e -~- 3. Let C be the complete intersection
and Yl the residual curve. We have

so by definition of e we get that Yi admits a link using surfaces of
degree a - 1 and e + 3. This proves (a).

If e = e(X) = 2N -E- h -~- r - ~ and a = a(X )  2N + h, then again
by Theorem 2.6 we get a link using surfaces of degree a and 2N +
+ h -~- r - 1. Let C be the complete intersection and Yl the residual
curve as before. From the exact sequence

we get e( Yl) c 2N -f-- h -E- r - ~. On the other hand, a computation
gives that the rightmost non-zero component of M( Yl) occurs in
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degree ex + r - 3  2N + h + r - 3. Hence again invoking The-
orem 2.6 we get a link for Yi using a surface of degree oc and one of

degree 2N + h + r - 2, proving ( b ) .
We now turn to (c). Let ~(C)=2~+~+~20135y

x(C)==2~+~

CLAIM. The condition that e( C) = 2N -~-- h + r - 5 implies

From a standard exact sequence we get

Hence

Note that for 0 E L:1...nr’ (1) and (2) together are equivalent to
the condition that a(C) = 2N + h. Our task will be complete if we
can produce a  basic double link curves Y E L:1...nr for any Hilbert
function allowed by (1)-(5) (by Corollary 1.3).

The first main observation to make is that (5) contains an implicit
upper bound, since the total drop in from degree 2N -E- h - 1
to 2N -~- h -f- r - 1 is 2N -E- h (including a drop of nl in degree
2N + h - 1), so there is a total surplus of exactly h in all the ine-
qualities (5) combined, considering also the conditions (2) and (3).
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For example, for h = 1 we have equality in (5) for every d but one,
and that one can only differ by 1.

The second main observation to make is that for any h, if

Yi E satisfies = 2N + h + r - 6 (the minimum possible)
and a( Yl) = 2N + h - 1 (the maximum possible), then a basic double
link Y E of Yl is limited if it is to continue to have the extremal
value for e and a. That is, for e( Y) = 2N + h + r - 5 we must use
a surface of degree  2N + h + r - 2 by Lemma 1.14, and a simple
check gives that for a( Y) = 2N -~- h we need to use a surface of

degree &#x3E; 2N -f- h for the basic double link.
We can proceed by induction. For h = 0 note that the minimal

curve satisfies (1)-(5) (with equality in (5)) by previous calculations
(cf. Theorem 2.5 (a), Corollary 2.18 (b)~ .

Let C E Ln~". nr, h &#x3E; 0, 1 with e(C) = 2N -+- h -E-- r - ~ and a(C) =
- 2N --E- h, and assume that every Hilbert function allowed by (1)-(5)
in is obtained by some basic double link curve Yl with

Since h &#x3E; 0 we have

for some 0 c k c r - 2. But by Corollary 1.13 and the inductive hy-
pothesis, there is a suitable basic double link curve such
that e(Yi)=2~+A+~20136, a ( Y1 ) = 2 N --~- h - 1, and such that

the curve Y obtained from Yl by a basic double link using a surface
of degree 2N -~- h -f- k has the same Hilbert function as that of C.
Note that the range 0  k  r - 2 is exactly what we required to pre-
serve the extremal values of e and a. L7
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