RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

H. AL-EZEH

Topological characterization of certain classes of lattices

Rendiconti del Seminario Matematico della Università di Padova, tome 83 (1990), p. 13-18

http://www.numdam.org/item?id=RSMUP 1990 83 13 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Topological Characterization of Certain Classes of Lattices.

H. AL-EZEH

ABSTRACT - Let L be a distributive lattice with 0 and 1, and let $\operatorname{Spec} L$ be the set of all proper prime ideals of L. $\operatorname{Spec} L$ can be endowed with two topologies, the spectral topology and D-topology. In this paper, it is proved that there is a bijection from the set of all σ -ideals of L to the set of all D-open subsets of $\operatorname{Spec} L$. Let $\operatorname{Max} L$ and $\operatorname{Min} L$ be the sets of maximal ideals and minimal prime ideals of L respectively. We prove that the two topologies coincide on $\operatorname{Spec} L$, $\operatorname{Max} L$, and $\operatorname{Min} L$ if and only if L is a boolean, stonian, and normal lattice respectively.

Throughout this paper a lattice means a distributive lattice with 0 and 1. Cornish [3] introduced σ -ideals in lattices and proved a lot of their basic properties. For any lattice L, let Spec L denotes the set of all proper prime ideals of L. This set can be given the hull-kernal topology or what is called also the spectral topology, where open sets are of the form $D(I) = \{P \in \text{Spec } L : I \not\subset P\}$, for details, see Brezuleanu and Diacanescu [1] and Johnstone [6]. Exactly, as in the case of commutative rings with unity, we can define another topology on Spec L called the D-topology. In the case of commutative rings with unity, see Lazard [7] and DeMarco [4]. A subset X of Spec L is called S-stable if for any P, $Q \in \text{Spec } L$, whenever $P \subseteq Q$ and $P \in X$,

^(*) Indirizzo dell'A.: Department of Mathematics, University of Jordan, Amman, Jordan.

14 H. Al-Ezeh

 $Q \in X$. Trivially, the set of all spectrally open S-stable subsets of Spec L defines a topology on Spec L called the D-topology. In fact, it is a subtopology of the spectral topology on Spec L, and open sets in the D-topology will be called D-open. For any $x \in L$, we denote by $x^* = \{y \in L : x \land y = 0\}$. Recall that an ideal I of L is called a σ -ideal if for all $x \in L$, $I \lor x^* = L$, i.e. $\exists x_1 \in I$ and $y \in x^*$ such that $1 = x_1 \lor y$. For more details about σ -ideals, see Cornish [3] and Georgescu and Voiculescu [5]. In this paper, our aim is to study the relationship between σ -ideals in a lattice L and D-open subsets of Spec L. Then we characterize those lattices for which the two topologies coincide on Spec L, Max L and Min L, where Max L and Min L are the spaces of maximal ideals and minimal prime ideals of L respectively.

LEMMA 1. A spectrally open set D(I) is S-stable if and only if I is a σ -ideal of the lattice L.

PROOF. Assume I is a σ -ideal of L. Let $P,Q \in \operatorname{Spec} L$ such that $P \subseteq Q$ and $P \in D(I)$. So $I \not\subset P$. Hence there exists $x \in I$ and $x \notin P$. Since I is a σ -ideal, there exist $x_1 \in I$ and $y \in x^*$ such that $1 = x_1 \lor y$. Therefore $y \in P \subseteq Q$. Because $1 = x_1 \lor y$, $x_1 \notin Q$. Consequently, $I \not\subset Q$, i.e. $Q \in D(I)$.

Conversely, assume that D(I) is a spectrally open S-stable set. We proceed by contradiction, so assume I is not a σ -deal. Thus there exists $x \in I$ such that $x^* \lor I \neq L$. Using Zorn's lemma, there exists a maximal ideal M of L such that $x^* \lor I \subseteq M$. Let $\mathfrak{F} = \{J : J \text{ is an ideal of } L \text{ such that } x \notin J, J \subseteq M\}$. This set contains the ideal $\{0\}$. By Zorn's lemma, there exists a prime ideal P of L in \mathfrak{F} . This is a maximal element in S, see Simmons [8]. Since $x \in I$, $P \in D(I)$. Thus D(I) is not S-stable, which contradicts the assumption. Hence I is a σ -ideal of L.

Recall that an element $x \in L$ is called a complemented element in L if there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y = 1$, y is called a complement for x. It is well known that if x has a complement in a distributive lattice then the complement is unique. We will denote the complement of x in L, if it exists, by x'.

Brezuleanu and Diaconescu [1] proved that any ideal I is the intersection of all prime ideals of L that contain I. So, D(I) = D(J) if and only if I = J. So, we get the following theorem.

THEOREM 2. Let L be a lattice. The mapping $I \mapsto D(I)$ is a bijection from the set of all σ -ideals of L to the set of all D-open subsets of Spec L.

Now we characterize those lattices for which the spectral topology and the D-topology coincide on Spec L. First, we give the following easy lemma.

LEMMA 3. Let L be a lattice. Then D(I) is spectrally clopen (i.e. open and closed) if and only if D(I) = D(x) for some complemented elements x in L.

PROOF. Since $D(I) \cap D(J) = D(I \cap J)$ and $D(I) \cup D(J) = D(I \vee J)$, we get $D(I) \cap D(J) = \emptyset$ and $D(I) \vee D(J) = L$ if and only if $I \cap J = \{0\}$ and $I \vee J = L$. Now, $I \vee J = L$ if and only if $1 = x \vee y$ for some $x \in I$ and $y \in J$. Since $x \wedge y \in I \cap J$, $x \wedge y = 0$. Thus x is a complemented element in L. Moreover, because L is distributive for every $z \in I$, $z = z \wedge (x \vee y) = z \wedge x$ since $z \wedge y = 0$. Thus I is a principal ideal generated by x.

The converse is trivial.

THEOREM 4. Let L be a lattice. Then the spectral topology and D-topology coincide on Spec L if and only if L is a boolean lattice (a lattice every element of which has a complement).

PROOF. Assume that the two topologies coincide. Let $x \in L$. Then (Dx) is D-open. So, by lemma 1, the ideal generated by x, (x], is a σ -ideal. Hence $(x] \lor x^* = L$, i.e. $\exists x_1 \in (x]$ and $y \in x^*$ such that $x_1 \lor y = 1$. Hence $x \lor y = 1$ and $x \land y = 0$. So x is a complemented element. Therefore L is a boolean lattice.

Conversely, assume L is boolean. Let I be an ideal of L, and $x \in I$. Then there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y = 1$, i.e. $I \vee x^* = L$. So I is a σ -ideal of L.

Let Min L be the set of all minimal prime ideals of the lattice L. In the following theorem we characterize the lattices L for which the spectral topology and the D-topology coincide on Min L. Recall that a lattice L is called stonian if for every $x \in L$, x^* is generated by a complemented element in L. Stonian lattices were discussed extensively in literature and infact they form on interesting class of lattices.

16 H. Al-Ezeh

THEOREM 5. A lattice L is stonian if and only if the spectral topology and the D-topology coincide on Min L.

PROOF. Assume that L is a stonian lattices. Let $x \in L$, and $D_{M}(x) = D(x) \cap \text{Min } L$. Since L is stonian, there exists a complemented element y in L such that $x^* = [y)$, the ideal generated by y. Now, we claim that $D_{M}(y')$, where y' is the complement of y.

Let $P \in D_M(x)$, then $x \notin M$. Because $x \wedge y = 0$, $y \in P$. Thus $y' \notin P$, i.e. $P \in D_M(y')$. For the other way around, let $P \in D_M(y')$, then $y' \notin P$, and so $y \in P$. Thus $x^* \subseteq P$. Since P is a minimal prime ideal of L, $x \notin P$, see Speed [9], i.e. $P \in D_M(x)$. Clearly, D(y') is a D-open set. Hence $D_M(x)$ is a D-open set in Min D. But $D_M(x) = \bigcup_{x \in I} D_M(x)$, so $D_M(x)$ is a D-open set in Min D.

Conversely, assume that the two topologies coincide on Min L. If $x \in L$, then $D_M(x)$ is a D-open set in L. So by lemma 1, there exists a σ -ideal I of L such that $D_M(x) = D_M(I)$. Consider

$$egin{aligned} V(x^*) &= \{P \in \operatorname{Spec} L \colon x^* \subseteq L \} \ &= \{P \in \operatorname{Spec} L \colon \exists Q \in \operatorname{Min} \ L \in x \notin Q \ \text{ and } \ Q \subseteq P \} \ , \end{aligned}$$

see Simmons [8].

Because D(I) is S-stable and $D_{M}(x) = D_{M}(I)$

$$D(I) = \left\{ P \in \operatorname{Spec} L \colon \exists Q \in \operatorname{Min} L \in x \notin Q, \text{ and } Q \subseteq P \right\}.$$

Thus $V(x^*)$ is open. Since $V(x^*) = \operatorname{Spec} L - D(x)$, $V(x^*)$ is clopen. Thus $V(x^*)$ is a clopen set in the spectral topology on L. So there exists a complemented element b in L such that $x^* = (b]$, the ideal generated by b in L.

A lattice is called normal if every prime ideal in L is contained in a unique maximal one. For more details about normal lattices, set Johnstone [6] and Simmons [8]. It should be noted that normality of the lattice in the sense of Cornish [2] is the dual concept of our normality and vice versa. Finally, we prove a theorem characterizing lattices for which the spectral topology and the D-topology coincide on Max L.

THEOREM 6. For a lattice L, the spectral topology and the D-topology coincide on Max L if and only if L is a normal lattice.

PROOF. Assume that L is a normal lattice, and let $x \in L$. For each prime ideal P of L, denote by M_P the unique maximal ideal of L containing P. For each open set D(I) in the spectral topology, let $D^{M}(I) = D(I) \cap \text{Max } L$. Consider $D^{M}(x)$, and let

$$\begin{split} V &= \{P \in \operatorname{Spec} L \colon \mathit{M}_{\scriptscriptstyle{P}} \in \mathit{D}^{\scriptscriptstyle{M}}(x)\} \\ &= \{P \in \operatorname{Spec} L \colon x \notin \mathit{M}_{\scriptscriptstyle{P}}\} \;. \end{split}$$

To show that $D^{M}(x)$ is a D-open set in Max L, assume $P_{1} \subseteq P_{2}$, $P_{1} \in V$, and $P_{2} \in \operatorname{Spec} L$. So $P_{2} \subseteq M_{P_{1}}$ because L is a normal lattice. Thus $M_{P_{2}} = M_{P_{1}}$. Therefore $M_{P_{2}} \in D^{M}(x)$, i.e. $P_{2} \in V$. Consequently, V is an S-stable set. Because $V \cap \operatorname{Max} L = D^{M}(x)$, $D^{M}(x)$ is a D-open set in Max L, and thus every spectrally open set in Max L is D-open. So the two topologies coincide on Max L.

Conversely, assume that the two topologies coincide on Max L. Let P be a prime ideal that is contained in two dist maximal ideals of L, say M_1 and M_2 . Thus there exists $a \in M_1$ and $a \notin M_2$, i.e. $M_1 \notin D^M(a)$ and $M_2 \in D^M(a)$. Because $D^M(a)$ is D-open in Max L, there exists a D-open subset of Spec L such that $D^M(a) \longrightarrow D^M(I)$. Since $M_2 \in D^M(a)$, $M_2 \in D^M(I)$ and so $I \nsubseteq M_2$ is S-stable and $P \subseteq M_1$, $M_1 \in D(I)$. Thus $M_1 \in D^M(a)$, which contradicts the fact that $a \in M_{13}$. Therefore L is a normal lattice.

REFERENCES

- [1] A. Brezuleanu R. Diaconescu, Sur la duale de la catégorie des treillis, Rev. Roumaine Math. Pures Appl., 14 (1969), pp. 311-323.
- [2] W. CORNISH, Normal lattices, J. Austral. Math. Soc., 14 (1972), pp. 200-215.
- [3] W. Cornish, 0-ideals, con+ruences and sheaf representation of lattices,-Rev. Roumaine Math. Pures Appl., 23 (1978), pp. 17-22.
- [4] G. DE MARCO, Projectivity of pure ideals, Rend. Sem. Math. Univ. Padova, 68 (1983), pp. 289-304.

- [5] G. Georgescu I. Voiculescu, Isomorphic sheaf representations of normal lattices, J. Pure Appl. Algebra, 48 (1987), pp. 213-223.
- [6] P. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982.
- [7] D. LAZARD, Disconnexites des spectres d'anneaux et des preschémas, Bull. Soc. Math. France, 95 (1967), pp. 95-108.
- [8] H. Simmons, Reticulated rings, J. Algebra, 66 (1980), pp. 169-192.
- [9] T. Speed, Some remarks on a class of distributive lattices, J. Austral. Math. Soc., 9 (1969), 289-296.

Manoscritto pervenuto in redazione l'8 agosto 1988.