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Periodic Solutions
for a Class of Autonomous Hamiltonian Systems.

H. BEIRÃO DA VEIGA (*)

1. - Introduction.

In this paper we shall be concerned with the existence of T-periodic
solutions of Hamiltonian H’(p, q), 4 = .H~(p, q) when
.H is of the form

so that the above equations of motion became

Hamiltonians of the form (1) occupy a central position in the general
theory of Hamiltonian systems. Moreover, in applications to con-
crete problems, p and q play substantially distinct roles. In fact, in
many classical problems, the term U(p) has the form (!)/pI2 or, more
in general, is a positive definite quadratic form. Hence U(p) is

strictly convex. On the contrary, a wide freedom in the choice of the
potential V(q) is required. For Hamiltonians of the special form
lpl2/2 + V(q), Hamilton’s equation reduces to Newton’s equation
q + V’(q) = 0. Here, the higher order term is a linear operator. The
natural nonlinear generalization of the above class (which shall be our

(*) Indirizzo dell’A. : Istituto di Matematiche Applicate « U. Dini », Pisa
University, 56100 Pisa, Italy.
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main model) consists in Hamiltonians of the form V(q).
Throughout this paper, ei (i E N) denote positive constants. We

shall prove the f ollowing result.

THEOREM A. Let U, V e R), U strictly convex, V everywhere
nonnegative. Assume that there are positive constants oc E ]1, -f- 00[,
p, &#x3E; ex/(ex - 1), and r such that the following conditions hold.

Then, for each T &#x3E; 0, the problem (2) has infinitely many T-periodic
non trivial solutions.

By setting a = 2 and by considering the particular case U(p) _
we reobtain a result of Benci (theorem 3.7 [B]), which in

turn generalizes a result of Rabinowitz (theorem 2.61 [Rl]). For

oc 0 2 theorem A is substantially different from all the results available
to us. Note that (in theorem A): (i) the potential V is superquadratic
at infinity when 1  a  2; (ii) the potential V could be subquadratic,
quadratic or superquadratic at infinity, when a &#x3E; 2; (iii) no growth
assumptions are made for small lql; (iv) V is not necessarily convex.
Remarks (i), (ii) and (iii) show that our assumptions are quite different
from those made by Rabinowitz in his well known theorems on

Hamiltonian systems (see [R3], [R4] for references).
Each one of the remarks (i)-(iv) show also that our assumptions

are entirely different from those of Clarke’s theorems 1.1 and 1.2

in reference [C2]. Note, in particular, that Clarke requires that

It  oc/(a -1), instead of , &#x3E; a/(h -1). Our assumptions are also

entirely different from those of Brezis and Coron theorem 2 [BC].
Hamiltonians of the particular form (1) satisfy the condition (6) of

reference [BC] if a &#x3E; 2 and It &#x3E; 2 (note that in theorem A, if a &#x3E; 2,
p can be smaller then 2); and under these assumptions theorem A
gives T-periodic solutions for small T and theorem 2 in [BC] gives
T-periodic solutions for large T. Note finally that, in references [BC]
and [C2], the Hamiltonians are assumed to be convex but minimality
of the period is proved.

We limit ourselves to give only the strictly necessary references.
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For a complete bibliography and usefull comments we refer the
reader to [R3].

2. - Proofs.

Without loss of generality we will assume that V(O) = 0. Let T

be a fixed positive number and denote by II 11 and the norms in

L#(0, T ; Rn) and in T ; respectively. We set fl = a/(a - 1).
Moreover,

T

where f u stands for dt. This abbreviated notation will be sys-
o

tematically used in the sequel. We set

Define

Clearly, = Pu(T ) = 0, for every u E E. The map P defines an

isomorphism between E and the Sobolev space T; R-).
The Legendre transform in Rn of U(p) is defined by

We recall that G’ (u) = p if and only if U’ ( p ) _ u, and that

for all u e R". On the other hand, it readily follows, from (H3), that



186

One has the following result.

THEOREM 1. Let (u, y) be a critical point of the functional

which is de f ined on the Banach space .E (~+ Then, the pair (p, q) =
= (G’(u), Pu + y) is a T-periodic solution of problem (2).

This result is proved by applying the « dual action principle »
(see Clarke [C1] and Clarke and Ekeland [CE]) only just to those
variables with respect to which the hamiltonian is convex. Before

proving the lemma, let us introduce nome notations. The sym-
bol  , ~ denotes the duality pairing between the dual of a Banach
space and the Banach space itself. The scalar product in Rn is denoted
either by or by x, y). Furthermore, f’ denotes the (Fréchet)
derivative of f, and f~, f~ denote the partial derivatives with respect
to u and y, respectively.

PROOF OF THEOREM 1. By taking into account that Pv is a peri-
odic function, one easily proves that

for every u, v E E, y e R". Moreover, y

In particular,

and

Note that,
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If (u, y) is a critical point, it follows from (8) that

Moreover, (7) shows that -~- P V’(Pu + y ) ] ~ v = 0, lfv E E,
or equivalently that there exists Z E Rn such that

Define

Due to (10), p and q are T-periodic.
Moreover, p - - V’ (Pu + y) = - V’(q), and 4 = u = U’ ( p ). //

Now, with the aid of Theorem 1, we will prove that the functional f
has non trivial critical points. Hence Theorem A holds. Before prov-

ing Theorem A, let us make the following remarks :

REMARK 1. The above results also apply if

where U and V are as in theorem 2, and 0 ~ ~ ~ n. This is easily
shown by doing the change of variables ~-~2013.P~ 7 
==~+1,...~.

REMARK 2. It is worth noting that the functional f(u, y) is inva-
riant under the 81-action of which is defined on

E @Rn by

One easily verifies that y ) = A, (u, y ) and that y ) =
- y ) (we assume that the elements u E E are extended as

T-periodic functions over the entire real line). Moreover, straight-
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forward calculations show that

The fixed points under the action of A are precisely the elements (0, y),
for y ERn.

Due to the above S1-invariance, it seems possible to apply Fadell,
Husseini, Rabinowitz Theorem 3.14 [FHR] to show that f has an
unbounded sequence of critical values. However the corresponding
sequence of T-periodic solutions could coincide with some in the

(T/m)-periodic solutions furnished by theorem A (m 
In the sequel we will prove theorem A by applying Rabinowitz’s

Theorem 5.3 [R4] to the functional f . Alternately, we could apply
the theorem 1.1 in reference [R2]. In order to apply Rabinowitz’s
theorem it is sufficient to prove that f satisfies the following hypothesis.

(16) There are positive constants e, 0 such that f(u, 0)~0 if

== ~ .

(17) For each finite dimensional subspace R of Rn there exists
a constant R = B(B) such that f(u, 0 wherever 11 u 11 +
+ Iyl ~ R, (u, y) E ae (1).

(18) The functional f verifies the Palais-Smale condition.

Condition (15) is trivially verified. Conditions (16), (17), and
(18) will be proved in the sequel.

LEMMA 1. tlnder the hypothesis of theorem A the condition (16) is
fullfillod.

PROOF. We shall denote by the usual norm on the space
T; Rn). To show that

(1) In particular the assumption (15) of Theorem 5.3 [R4] holds. See also
Remark 5.5 (iii) there.
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it is sufficient to prove that, for every u E one has

Let cio be a positive constant such that II for all v E E.

By assuming one gets, for every t E [0, T],

where It readily f ollows that

In particular,

Since IPu 1,,,. we conclude that

if e = II u II is small enough. /i

LEMMA 2. Tlnder the assumptions of theorem A, condition (17) is

fulfilled.

PROOF. One easily verifies that

is a norm in Rn , where ll llu stands for the usual norm in the space
T; Rn). Let ui, ... , 7 u, be linearly independent vectors in E,

and denote by Ek the subspace generated by these vectors. Set
f Since .9 is finite dimensional, there exists a positive
constant g = K(f) such that
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By using (5)2, (4), and (20) one proves that

for every (u, y) E R. The thesis follows, since , &#x3E; p. ff

Finally we prove the Palais-Smale condition.

LEMMA 3. Let (um, ym) E B (D Rn be a sequence s2cch that

and f’(um, Ym) --~ 0 as m -~ + oo. Then (um, ym) is a bounded se-

quence in E EB there exists a convergent subsequence in
EEBRn.

PROOF. In the sequel we denote by .E’ = T ; = 0}
the dual space of E, and by 11 the norm of the linear operator
P : E - T ; Rn). For convenience, we set 8m = ym), 9 6, -
= f;(um, ym). By assumption one has as na - + 00.

By using formulae (9) with (u, y) = (v, x) = (um, and by tak-
ing into account (4)2 and (5)1, it readily follows

The above estimate, the assumption

the boundedness of the sequences and lðml, and the condition
,u &#x3E; ~ imply that
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From (4), and (21), it follows that

On the other hand,

This inequality, y together with (5)2’ (21)1 and (22) yields

The estimates (22), (23) show that and )ym) are uniformly bounded.
Now we prove the second part of the lemma. From (7) one gets

for every v E E. Hence

On the other hand, from (8) it follows that
and from (4) it follow3

Consequently, y the mean value of G’ (um ) + V’(Pum + is uni-

formly bounded with respect to m. Hence, along a suitable sub-

sequence, one has

Equations (24) and (25) imply that

Therefore, by setting zm = G’ (um), ~o - + ym) = z, one

has in La. Moreover, Um= U’(z,,,), a.e. in ]0, T[. A well known
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Krasnoselskii’s theorem shows that ?7’ is a continuous map from L-
into .L~ (note that assumption (HI) implies that 
Vp e Rn; argue as in [E], lemma 1). Hence, um - in The

convergence of ym along some subsequence is obvious. ff

The existence of infinitely many T-periodic solutions follows by
a well known argument, since each (T/m)-periodic solution 
is T-periodic. We don’t know if our solution has T as the minimal
period.
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