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Periodic Solutions
for a Class of Autonomous Hamiltonian Systems.

H. BEIRAO DA VEIGA (*)

1. — Introduction.

In this paper we shall be concerned with the existence of T-periodic
solutions of Hamiltonian systems p = — H(p, q), § = H,(p, ¢) when
H is of the form

(1) H(p, q) = Up) + V(9)

so that the above equations of motion became

(2) p=—V(@, 4=U().

Hamiltonians of the form (1) occupy a central position in the general
theory of Hamiltonian systems. Moreover, in applications to con-
crete problems, p and ¢ play substantially distinct roles. In fact, in
many classical problems, the term U(p) has the form (3)|p|? or, more
in general, is a positive definite quadratic form. Hence U(p) is
strictly convex. On the contrary, a wide freedom in the choice of the
potential V(q) is required. For Hamiltonians of the special form
|p2/2 4+ V(q), Hamilton’s equation reduces to Newton’s equation
q¢ + V'(g) = 0. Here, the higher order term is a linear operator. The
natural nonlinear generalization of the above class (which shall be our

(*) Indirizzo dell’A.: Istituto di Matematiche Applicate « U. Dini», Pisa
University, 56100 Pisa, Italy.
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main model) consists in Hamiltonians of the form (1/a)|p|*+ V(g)-
Throughout this paper, ¢; (¢ € N) denote positive constants. We
shall prove the following result.

THEOREM A. Let U, Ve C(R" R), U strictly convex, V everywhere
nonnegative. Assume that there are positive constants x€ 11, + oof,
u>of(w—1), and r such that the following conditions hold.

(Hy) alpl*= U(p) = elpl*, for all peRn,
(H.) aUp)=U'(p)p, for all peR",
(H) 0<uV@)=V'(Q):q—c, forall lg=r.

Then, for each T > 0, the problem (2) has infinitely many T-periodic
non trivial solutions.

By setting « = 2 and by considering the particular case U(p) =
= (4)|p|?, we reobtain a result of Benci (theorem 3.7 [B]), which in
turn generalizes a result of Rabinowitz (theorem 2.61 [R1]). For
a 7~ 2 theorem A is substantially different from all the results available
to us. Note that (in theorem A): (i) the potential V is superquadratic
at infinity when 1 < « < 2; (ii) the potential V could be subquadratic,
quadratic or superquadratic at infinity, when o« > 2; (iii) no growth
assumptions are made for small |¢|; (iv) V is not necessarily convex.
Remarks (i), (ii) and (iii) show that our assumptions are quite different
from those made by Rabinowitz in his well known theorems on
Hamiltonian systems (see [R3], [R4] for references).

Each one of the remarks (i)-(iv) show also that our assumptions
are entirely different from those of Clarke’s theorems 1.1 and 1.2
in reference [C2]. Note, in particular, that Clarke requires that
u < af(x—1), instead of u > af(f —1). Our assumptions are also
entirely different from those of Brezis and Coron theorem 2 [BC].
Hamiltonians of the particular form (1) satisfy the condition (6) of
reference [BC] if «> 2 and u > 2 (note that in theorem A, if x> 2,
4 can be smaller then 2); and under these assumptions theorem A
gives T-periodic solutions for small 7 and theorem 2 in [BC] gives
T-periodic solutions for large T. Note finally that, in references [BC]
and [C2], the Hamiltonians are assumed to be convex but minimality
of the period is proved.

We limit ourselves to give only the strictly necessary references.
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For a complete bibliography and usefull comments we refer the
reader to [R3].

2. — Proofs.

Without loss of generality we will assume that V(0) = 0. Let T
be a fixed positive number and denote by | | and | |’ the norms in
L8, T'; R*) and in L*(0, T'; R*), respectively. We set § = of(ot — 1).
Moreover,

E— {ueLﬂ(O, T; R»):fu= 0},

T
where f u stands for f u(t)dt. This abbreviated notation will be sys-
0

tematically used in the sequel. We set
B,={ucE: |u|<g}, 0B,= {uck:|u|=yg}.

Define
t

3) Pu(t) = f w(z)dr, Vie[o,T].

0

Clearly, Pu(0) = Pu(T) = 0, for every u € E. The map P defines an
isomorphism between E and the Sobolev space W},’ﬁ(o, T; R»).
The Legendre transform in R» of U(p) is defined by
G(u) = Sup {u-p— U(p): peR"} .
We recall that Q'(u) = p if and only if U'(p) = %, and that

e ulf = Gu) < 05]“]B )
(4) G'(u) u<pGu),

|G (w)| = cg|ult,

for all w e R*. On the other hand, it readily follows, from (H?), that

(5)
for all g e R~

{ Vig)q=pV(g)— ¢,
V(g) = c4lq|*— ¢,
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One has the following result.

THEOREM 1. Let (u,y) be a critical point of the functional

(6) fu, 9) =[[16w) — V(Pu + 9],

which is defined on the Banach space E D R». Then, the pair (p, q) =
= (G'(u), Pu + y) is a T-periodic solution of problem (2).

This result is proved by applying the «dual action principle »
(see Clarke [C1] and Clarke and Ekeland [CE]) only just to those
variables with respect to which the hamiltonian is convex. Before
proving the lemma, let us introduce nome notations. The sym-
bol {,) denotes the duality pairing between the dual of a Banach
space and the Banach space itgelf. The scalar product in R» is denoted
either by z-y or by <(«,y). Furthermore, f' denotes the (Fréchet)
derivative of f, and f,,f, denote the partial derivatives with respect
to » and y, respectively.

ProOF oF THEOREM 1. By taking into account that Pw is a peri-
odic function, one easily proves that

(7) <f;('“9 Y)y vy =
=fG’(u)~v — V'(Pu + y)-Pv =f[G’(u) + PV'(Pu + y)]-v
for every w,v e B, y e R~. Moreover,
(®) iy 9y 0> = —(|[V'(Pu+p)-w, VoeRs.
In particular,

fluy) = (6'(w) +PV'(Pu + 9),— [V'(Pu + y)) e =@ R,

and
@ ), 00 =[E W —[V(Pu+y)Po+a).

Note that fe CY{E @ R~ R).
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If (u,y) is a critical point, it follows from (8) that
(10) j Vi(Pu+y)=0.

Moreover, (7) shows that f [G'(w) + PV'(Pu + y)]-v =0, Vve E,
or equivalently that there exists z € R* such that
(11) G'(w) + PV'(Pu+y)==2, Vitel[0,T].
Define
= @' (u) =2— PV'(Pu
(12) { V4 () (Pu +9),
q=Pu-ity.

Due to (10), » and ¢ are T-periodic.
Moreover, p = — V'(Pu + y) = —V'(q), and § = u = U'(p). [/

Now, with the aid of Theorem 1, we will prove that the functional f
has non trivial critical points. Hence Theorem A holds. Before prov-
ing Theorem A, let us make the following remarks:

REMARK 1. The above results also apply if

H(p, q) = U(P1y oy Prs Guetrs -3 Gu) T V@ay ooy Qs Prctrs w09 D) »

where U and V are as in theorem 2, and 0 < k < n. This is easily
shown by doing the change of variables ¢,—~—p;,, p;,—~>¢;, j=
=k-41,..,n

REMARK 2. It is worth noting that the functional f(u, y) is inva-
riant under the S!-action of A = {As: seR} which is defined on
E@R" by

(13) 4,0, 9) = (ut + 8), y+ f u()dr) -
0

One easily verifies that A, ,(u,y) = A,(u,y) and that 4,4 (u,y) =
= A4, (u,y) (we assume that the elements w € E are extended as
T-periodic functions over the entire real line). Moreover, straight-
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forward calculations show that
(14) f(4,(u, 9)) = f(u,y), V(u,y)e EQR", VseR.

The fixed points under the action of A are precisely the elements (0, y),
for y e R~

Due to the above S-invariance, it seems possible to apply Fadell,
Husseini, Rabinowitz Theorem 3.14 [FHR] to show that f has an
unbounded sequence of critical values. However the corresponding
sequence of T-periodic solutions could coincide with some in the
(Z'/m)-periodic solutions furnished by theorem A(m e N).

In the sequel we will prove theorem A by applying Rabinowitz’s
Theorem 5.3 [R4] to the functional f. Alternately, we could apply
the theorem 1.1 in reference [R2]. In order to apply Rabinowitz’s
theorem it is sufficient to prove that f satisfies the following hypothesis.

(15) flr==0,

(16) There are positive constants g,0 such that f(u,0)=6 if
lu] =e-

(17) For each finite dimensional subspace £ of E@® R~ there exists
a constant R = R(H) such that f(u,y) <0 wherever |u| +

+ W=z R, (wy) ek ().

(18) The functional f verifies the Palais-Smale condition.

Condition (15) is trivially verified. Conditions (16), (17), and
(18) will be proved in the sequel.

LEMMA 1. Under the hypothesis of theorem A the condition (16) is
fullfilled.

ProoF. We shall denote by ||, the usual norm on the space
L>0, T; R*). To show that

f [G(x) — V(Pu)]=6 for all ue dB,

(1) In particular the assumption (I5) of Theorem 5.3 [R4] holds. See also
Remark 5.5 (iii) there.
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it is sufficient to prove that, for every w € 0B,, one has
o[ [lulo— V(Pw] = 6.

Let ¢,, be a positive constant such that |[Pv]e=< ¢]v| for all ve E.
By assuming that ¢ < ¢;; one gets, for every ¢ [0, T],

IV (Puv) | < [Pu(t) o (P(u(t)| < |Pu(t)|? [o(Pu(t)|,

where lim w(g) = w(0) = 0. It readily follows that

la]—0
UV(Pu)I < 0, max |w(Pu(t))| |u]6.
0SIST

In particular,
04 f [ult— V(Pu)]= (es— en max |o(Pu(t))|¢?) -
0sisT
Since |Pu|o= ¢,,0 We conclude that

¢s— ¢;; max |w(Pu(t))| >0
0<t<T

if o = |u| is small enough. [/

LemMA 2. Under the assumptions of theorem A, condition (17) is
fulfilled.

PrOOF. One easily verifies that

(19) [(w, )] = [Pu + y],

is a norm in @ R», where | |, stands for the usual norm in the space
L#(0,T; R*). Let u,,...,u; be linearly independent vectors in E,
and denote by K, the subspace generated by these vectors. Set
E = E,®R" Since F is finite dimensional, there exists a positive
constant K — K(E) such that

(20) E(lul + W) = [Pu+yl,, VYwyek.
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By using (5),;, (4), and (20) one proves that

f(uy 0) < osl|u||f— e|Pu + y||*— ¢, T =
= os(Jul + )P — e E*([u] + lyl)*,

for every (u,y)e H. The thesis follows, since u>f. /|

Finally we prove the Palais-Smale condition.

LEMMA 3. Let (Um, Yn) E EDR" be a sequence such that
fUnyym) = M, VmeN,

and f'(UpmyYn) —>0 as m — + oco. Then (Un,Yn) 8 & bounded se-
quence in E@ Rr. Moreover, there exists a convergent subsequence in
EDR~

ProoF. In the sequel we denote by E' = {we L*(0, T; R"): f w =0}
the dual space of F, and by |P| the norm of the linear operator
P: E — L0, T; R*). For convenience, we $et &,= f.(%njs Yn); On=
= fy(¥my Ym). By assumption one has |e,|z—>0, 64| =0, a8 m — -+ oco.

By using formulae (9) with (%, y) = (v, ) = (¥m, ¥n), and by tak-
ing into account (4), and (5),, it readily follows

Cemy md + Oy Y> < B[6(tim) = 1 [ V(P +- 9) + 0,7 .
The above estimate, the assumption
[6wn) —[VPunt g < 21,

the boundedness of the sequences |e,|z and |6.|, and the condition
u>f, imply that

fV(Pum F Yn) = €2+ 013("’“"; " + I?/lm) ’
(21)
J6u) < 3 + 010+ (Il + 9] -
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From (4), and (21), it follows that
(22) l4nl? < €10+ ess(lwmll + [Yu]) -
On the other hand,
[lwalo < 202 [ (1 + |Pun+ yal) + 202 P ]un]o
This inequality, together with (5),, (21), and (22) yields
(23) yml? < 016 + (] + [yn]) -

The estimates (22), (23) show that |, | and |y,| are uniformly bounded.
Now we prove the second part of the lemma. From (7) one gets

Comy 0) = [[6"(tn) + PV'(Pttn+ ya)]0
for every v € E. Hence
(24) |16/ ) + PV (Pun+ 3)]0] < lealn [0]-

On the other hand, from (8) it follows that | f V'(Pthy, + Yu)| = |Om],
and from (4) it follows

6| S T lunles

Consequently, the mean value of G'(u,) + V'(P%.,+ ¥») is uni-
formly bounded with respect to m. Hence, along a suitable sub-
sequence, one has

(25) tim o (6 () + V(Pun+ 9,01 = & eRe.

m—> + oo
Equations (24) and (25) imply that

(26) lim [[G' (%) + PV (Pt + Yum)— &|'= 0.

m— + oo

Therefore, by setting z,= G'(un), &— PV'(Pun+ yn) = 2, one
has 2,,—z in L*. Moreover, %, = U'(2,), a.e. in 10, T[. A well known
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Krasnoselskii’s theorem shows that U’ is a continuous map from L«
into L# (note that assumption (H1) implies that |U'(p)| < c|p|*-,
Vp € R*; argue as in [E], lemma 1). Hence, w, — U'(z) in L8. The
convergence of y, along some subsequence is obvious. [/

The existence of infinitely many Z7-periodic solutions follows by
a well known argument, since each (7'/m)-periodic solution (m € N)
is T-periodic. We don’t know if our solution has 7 as the minimal
period.

REFERENCES

[B] V. BENcI, Some critical point theorems and applications, Comm. Pure
Appl. Math., 33 (1980), pp. 147-172.

[BC] H. Brezis - J. M. CoroN, Periodic solutions of nonlinear wave equa-
tions and Hamiltonian systems, Amer. J. Math., 103 (1981), pp. 559-570.

[C1] F. CLARKE, Periodic solutions of Hamiltonian inclusions, J. Diff. Eq.,
40 (1980), pp. 1-6.

[C2] F. CLARKE, Periodic solutions of Hamilton’s equations and local
minima of the dual action, Trans. Amer. Math. Soc., 287 (January
1985), pp. 239-251.

[CE] F. CLARkE - I. EKELAND, Hamiltonian trajectories having prescribed
mintmal period, Comm. Pure Appl. Math., 33 (1980), pp. 103-116.

[E] I. EXELAND, Periodic solutions of Hamiltonian equations and a theorem
of P. Rabinowitz, J. Diff. Eq., 34 (1979), pp. 523-534.

[FHR] E. R. FApELL - S. HussEiN1 - P. H. RaBiNowiTz, Borsuk-Ulam the-
orems for arbitrary S' actions and applications, Trans. Amer. Math.
Soc., 274 (1982), pp. 345-360.

[R1] P. H. RaBiNowITZ, Periodic solutions of Hamiltonian systems, Comm.
Pure Appl. Math., 31 (1978), pp. 157-186.

[R2] P.H. RaBiNowirz, Some critical point theorems and applications to
semilinear elliptic partial differential equations, Ann. Sc. Norm. Sup.
Pisa, 2 (1978), pp. 215-233.

[R3] P. H. RaBINOWITZ, Periodic solutions of Hamiltonian system: A survey,
SIAM J. Math. Anal., 13 (1982), pp. 343-352.

[R4] ©P.H. RaBiNowITZ, Minimax methods in critical point theory with
applications to differential equations, CBMS Lecture Notes, N. 65.

Manoscritto pervenuto in redazione il 30 giugno 1989.



